
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Conditions and Branching

2

Nested If else

 Suppose that we want to compute the absolute
value |xy| of the product of two integers x and y and
store the value in z. Here is a possible way of doing
it:

 if (x >= 0)
{ z = x;

if (y >= 0) z *= y;
else z *= -y; }

else { z = -x;
if (y >= 0) z *= y;
else z *= -y; }

 This can also be implemented as:

if (x >= 0) z = x; else z = -x;

if (y >= 0) z *= y; else z *= -y;

Here is a third way of doing the same:

 if (((x >= 0)&&(y >= 0)) || ((x < 0)&&(y < 0)))

z = x * y;

else z = -x * y;

3

Repeated if-else statements

 A structure of the last figure can be translated into C
as:

 if (Condition 1)
{ Block 1 }

else if (Condition 2)
{ Block 2 }

else if }
else if (Condition n)

{ Block n }
else
{ Block n+1 }

Example

 Here is a possible implementation of the
assignment y = |x|:

 scanf("%d",&x);

if (x == 0) y = 0;

else if (x > 0) y = x;

else y = -x;

4

The Switch Statement

switch (E)

{ case val1 : Block 1 break;

case val2 : Block 2 break;

...

case valn : Block n break;

default: Block n+1

}

Example

 char lang; ...
switch (lang) {

case ‘B’: printf(“Dhanyabad\n”); break;
case 'E' : printf("Thanks\n"); break;
case 'F' : printf("Merci\n"); break;
case 'G' : printf("Danke\n"); break;
case 'H' : printf("Shukriya\n"); break;
case 'I' : printf("Grazie\n"); break;
case 'J' : printf("Arigato\n"); break;
case 'K' : printf("Dhanyabaadagaru\n"); break;
default : printf("Thanks\n"); }

5

Switch is strange

 Switch statements are strange.

 It checks for the satisfying value of the
condition it is checking.

 Once a match is found, further checks are
disabled and all the subsequent statements
are done one after the other, irrespective of
the condition.

Example

 There are, however, situations where this odd
behavior of switch can be exploited. Let us
look at an artificial example. Suppose you
want to compute the sum

 n + (n+1) + ... + 10

6

Using the strangeness of Switch

switch (n) {
case 0 :
case 1 : sum += 1;
case 2 : sum += 2;
case 3 : sum += 3;
case 4 : sum += 4;
case 5 : sum += 5;
case 6 : sum += 6;
case 7 : sum += 7;
case 8 : sum += 8;
case 9 : sum += 9;
case 10 : sum += 10;

break;
default : printf("n = %d is not in the desired range...\n", n);

}

Displaying a menu and using Switch

#include<stdio.h>
main()
{

int choice;

printf("Choice of destination:\n");
printf("\t1 - Mercury\n");
printf("\t2 - Venus\n");
printf("\t3 - Mars\n");
printf("Enter the number corresponding to your choice: ");
scanf("%d",&choice);

switch(choice)
{
case 1:
puts("Mercury is closest to the sun.");
puts("So, the weather may be quite hot there.");
puts("The journey will cost you 10000 IGCs.");
//break;

case 2:
puts("Venus is the second planet from the sun.");
puts("The weather is probably hot and poisonous.");
puts("The journey will cost 5000 IGCs.");
break;

7

The output menu

case 3:
puts("Mars is the closest planet to earth in the solar system.");
puts("There is probably some form of life there.");
puts("The journey will cost 3000 IGCs.");
break;

default:
puts("Unknown destination.\n");
break;

}
puts("\n Note: IGC = Inter Galactic Currency\n");

-bash-3.2$./a.out
Choice of destination:

1 - Mercury
2 - Venus
3 - Mars

Enter the number corresponding to your choice:

Loops in C

8

Loops

 This is the first time we are going to make an
attempt to move backward in a program. Loops
make this backward movement feasible in a
controlled manner. This control is imparted by
logical conditions.

 Consider the computation of the harmonic number:
 Hn = 1/1 + 1/2 + 1/3 + ... + 1/n.

 Initialize sum to 0. for each i in the set {1,2,...,n} add
1/i to sum. Report the accumulated sum as the
output value.

Recursive definitions

 Use mathematical definition:
 strong form

 weak form

 Very useful technique to design algorithms.

 Consider the problem of generating all possible
permutations of n numbers.
 With n=1, there is just one possibility.

 With other values of n:
 Imagine that you have the permutations for n-1 numbers.

 Insert the nth number into all the positions of each of these
permutations.

9

Computing the gcd of a and b, two
positive integers
 gcd(a,b) is also computable in a recursive

fashion.

 If a=0 or b=0, gcd(a,b)=0

 If a=b, gcd(a,b)=a

 If a > b, and r = a rem b. Then
gcd(a,b) = gcd(b,r).

Iterative definition

 As long as b is not equal to 0 do the
following:
 Compute the remainder r = a rem b.

 Replace a by b and b by r.

 Report a as the desired gcd.

10

Pre-test loops

 The condition is checked first.
 If yes, then enters the body.
 After the loop body is executed, the

control comes unconditionally to
the start of the loop.

 But, now the condition might not
hold anymore as the loop body
may have changed it.

 So, the condition is again checked.
 If it is satisfied, enters the loop

body again.
 If no, it goes beyond the end of the

loop.

Post Test loops

 The control of execution enters
the loop body unconditionally.

 After the entire body is
executed, the loop condition is
checked.

 If it is satisfied, control goes
back to the top of the loop, the
body is again executed and the
continuation condition is again
checked.

 This process is repeated until
the continuation condition
becomes false.

 In that case, control leaves the
loop and proceeds further down
the code.

11

The while loop

 while (the continuation condition is true) { execute
loop body; }

 Example: gcd(a,b)
while (b > 0)
{

r = a % b; /* Compute the next remainder */
a = b; /* Replace a by b */
b = r; /* Replace b by r */

}
printf("gcd = %d\n",a);

Example: Harmonic Number

float i, H;
unsigned int n;
... //Read n etc.
i = 0; H = 0;
while (i < n)
{ ++i; /* Increment i */
H += 1.0/i; /* Update the harmonic number

accordingly */
}
printf("H(%d) = %f\n", n, H);

12

Example: Fibonacci Number

i = 1; /* Initialize i to 1 */
F = 1; /* Initialize Fi */
p1 = 0; /* Initialize Fi-1 */
while (i < n)
{

++i; /* Increment i */
p2 = p1; /* The old Fi-1 now becomes Fi-2 */
p1 = F; /* The old Fi now becomes Fi-1 */
F = p1 + p2; /* Compute Fi from Fi-1 and Fi-2 */

}
printf("F(%d) = %d", n, F);

The do-while loop

 The do-while loop of C is a post-test loop. It
has the following syntax:

 do { execute loop body; }

while (continuation condition is true);

13

The gcd using do-while

do {

r = a % b; /* Compute the next remainder */

a = b; /* Replace a by b */

b = r; /* Replace b by r */

}

while (b > 0);

printf("gcd = %d\n",a);

Note that here b cannot be 0.

