
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Conditions and Branching

2

Nested If else

 Suppose that we want to compute the absolute
value |xy| of the product of two integers x and y and
store the value in z. Here is a possible way of doing
it:

 if (x >= 0)
{ z = x;

if (y >= 0) z *= y;
else z *= -y; }

else { z = -x;
if (y >= 0) z *= y;
else z *= -y; }

 This can also be implemented as:

if (x >= 0) z = x; else z = -x;

if (y >= 0) z *= y; else z *= -y;

Here is a third way of doing the same:

 if (((x >= 0)&&(y >= 0)) || ((x < 0)&&(y < 0)))

z = x * y;

else z = -x * y;

3

Repeated if-else statements

 A structure of the last figure can be translated into C
as:

 if (Condition 1)
{ Block 1 }

else if (Condition 2)
{ Block 2 }

else if }
else if (Condition n)

{ Block n }
else
{ Block n+1 }

Example

 Here is a possible implementation of the
assignment y = |x|:

 scanf("%d",&x);

if (x == 0) y = 0;

else if (x > 0) y = x;

else y = -x;

4

The Switch Statement

switch (E)

{ case val1 : Block 1 break;

case val2 : Block 2 break;

...

case valn : Block n break;

default: Block n+1

}

Example

 char lang; ...
switch (lang) {

case ‘B’: printf(“Dhanyabad\n”); break;
case 'E' : printf("Thanks\n"); break;
case 'F' : printf("Merci\n"); break;
case 'G' : printf("Danke\n"); break;
case 'H' : printf("Shukriya\n"); break;
case 'I' : printf("Grazie\n"); break;
case 'J' : printf("Arigato\n"); break;
case 'K' : printf("Dhanyabaadagaru\n"); break;
default : printf("Thanks\n"); }

5

Switch is strange

 Switch statements are strange.

 It checks for the satisfying value of the
condition it is checking.

 Once a match is found, further checks are
disabled and all the subsequent statements
are done one after the other, irrespective of
the condition.

Example

 There are, however, situations where this odd
behavior of switch can be exploited. Let us
look at an artificial example. Suppose you
want to compute the sum

 n + (n+1) + ... + 10

6

Using the strangeness of Switch

switch (n) {
case 0 :
case 1 : sum += 1;
case 2 : sum += 2;
case 3 : sum += 3;
case 4 : sum += 4;
case 5 : sum += 5;
case 6 : sum += 6;
case 7 : sum += 7;
case 8 : sum += 8;
case 9 : sum += 9;
case 10 : sum += 10;

break;
default : printf("n = %d is not in the desired range...\n", n);

}

Displaying a menu and using Switch

#include<stdio.h>
main()
{

int choice;

printf("Choice of destination:\n");
printf("\t1 - Mercury\n");
printf("\t2 - Venus\n");
printf("\t3 - Mars\n");
printf("Enter the number corresponding to your choice: ");
scanf("%d",&choice);

switch(choice)
{
case 1:
puts("Mercury is closest to the sun.");
puts("So, the weather may be quite hot there.");
puts("The journey will cost you 10000 IGCs.");
//break;

case 2:
puts("Venus is the second planet from the sun.");
puts("The weather is probably hot and poisonous.");
puts("The journey will cost 5000 IGCs.");
break;

7

The output menu

case 3:
puts("Mars is the closest planet to earth in the solar system.");
puts("There is probably some form of life there.");
puts("The journey will cost 3000 IGCs.");
break;

default:
puts("Unknown destination.\n");
break;

}
puts("\n Note: IGC = Inter Galactic Currency\n");

-bash-3.2$./a.out
Choice of destination:

1 - Mercury
2 - Venus
3 - Mars

Enter the number corresponding to your choice:

Loops in C

8

Loops

 This is the first time we are going to make an
attempt to move backward in a program. Loops
make this backward movement feasible in a
controlled manner. This control is imparted by
logical conditions.

 Consider the computation of the harmonic number:
 Hn = 1/1 + 1/2 + 1/3 + ... + 1/n.

 Initialize sum to 0. for each i in the set {1,2,...,n} add
1/i to sum. Report the accumulated sum as the
output value.

Recursive definitions

 Use mathematical definition:
 strong form

 weak form

 Very useful technique to design algorithms.

 Consider the problem of generating all possible
permutations of n numbers.
 With n=1, there is just one possibility.

 With other values of n:
 Imagine that you have the permutations for n-1 numbers.

 Insert the nth number into all the positions of each of these
permutations.

9

Computing the gcd of a and b, two
positive integers
 gcd(a,b) is also computable in a recursive

fashion.

 If a=0 or b=0, gcd(a,b)=0

 If a=b, gcd(a,b)=a

 If a > b, and r = a rem b. Then
gcd(a,b) = gcd(b,r).

Iterative definition

 As long as b is not equal to 0 do the
following:
 Compute the remainder r = a rem b.

 Replace a by b and b by r.

 Report a as the desired gcd.

10

Pre-test loops

 The condition is checked first.
 If yes, then enters the body.
 After the loop body is executed, the

control comes unconditionally to
the start of the loop.

 But, now the condition might not
hold anymore as the loop body
may have changed it.

 So, the condition is again checked.
 If it is satisfied, enters the loop

body again.
 If no, it goes beyond the end of the

loop.

Post Test loops

 The control of execution enters
the loop body unconditionally.

 After the entire body is
executed, the loop condition is
checked.

 If it is satisfied, control goes
back to the top of the loop, the
body is again executed and the
continuation condition is again
checked.

 This process is repeated until
the continuation condition
becomes false.

 In that case, control leaves the
loop and proceeds further down
the code.

11

The while loop

 while (the continuation condition is true) { execute
loop body; }

 Example: gcd(a,b)
while (b > 0)
{

r = a % b; /* Compute the next remainder */
a = b; /* Replace a by b */
b = r; /* Replace b by r */

}
printf("gcd = %d\n",a);

Example: Harmonic Number

float i, H;
unsigned int n;
... //Read n etc.
i = 0; H = 0;
while (i < n)
{ ++i; /* Increment i */
H += 1.0/i; /* Update the harmonic number

accordingly */
}
printf("H(%d) = %f\n", n, H);

12

Example: Fibonacci Number

i = 1; /* Initialize i to 1 */
F = 1; /* Initialize Fi */
p1 = 0; /* Initialize Fi-1 */
while (i < n)
{

++i; /* Increment i */
p2 = p1; /* The old Fi-1 now becomes Fi-2 */
p1 = F; /* The old Fi now becomes Fi-1 */
F = p1 + p2; /* Compute Fi from Fi-1 and Fi-2 */

}
printf("F(%d) = %d", n, F);

The do-while loop

 The do-while loop of C is a post-test loop. It
has the following syntax:

 do { execute loop body; }

while (continuation condition is true);

13

The gcd using do-while

do {

r = a % b; /* Compute the next remainder */

a = b; /* Replace a by b */

b = r; /* Replace b by r */

}

while (b > 0);

printf("gcd = %d\n",a);

Note that here b cannot be 0.

