
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Link for slides

 http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PDS/index.htm

2

Assignments

Ternary Operator

 Consists of two symbols: ? and :
 example,

larger = (i > j) : i : j;

 i and j are two test expressions.

 Depending on whether i > j, larger (the variable on
the left) is assigned.
 if (i > j), larger = i

 else (i,e i<=j), larger = j

 This is the only operator in C which takes three
operands.

3

Comma Operator

 int i, j;

 i=(j=1,j+10);

 What is the result? j=11.

Operator Precedence and Associativity

 An explicitly parenthesized arithmetic (and/or
logical) expression clearly indicates the sequence of
operations to be performed on its arguments.

 However, it is quite common that we do not write all
the parentheses in such expressions.

 Instead, we use some rules of precedence and
associativity, that make the sequence clear.

 For example, the expression
 a + b * c conventionally stands for

 a + (b * c)
 and not for (a + b) * c

4

Another ambiguity

 Let us look at the expression a - b - c
 Now the common operand b belongs to two same

operators (subtraction).
 They have the same precedence. Now we can

evaluate this as
 (a - b) - c or as
 a - (b - c)
 Again the two expressions may evaluate to different values.
 The convention is that the first interpretation is correct.

 In other words, the subtraction operator is left-
associative.

Associativity and Precedence

right binary= += -= *= etc.

left binary| ^

left binary&

left binary<< >>

left binary+ -

left binary* / %

right unary- ~

non-associative unary++ --

AssociativityTypeOperator(s)

5

Unary operators

 Consider ++a and a++
 there is a subtle difference between the two.
 Recall that every assignment returns a value.
 The increment (or decrement) expressions ++a and a++

are also assignment expressions.
 Both stand for "increment the value of a by 1". But

then which value of a is returned by this expression?
We have the following rules:
 For a++ the older value of a is returned and then the value

of a is incremented. This is why it is called the post-
increment operation.

 For ++a the value of a is first incremented and this new
(incremented) value of a is returned. This is why it is called
the pre-increment operation.

A sample code

#include<stdio.h>

main()

{

int a, s;

a=1;

printf("a++=%d\n",a++);

printf("++a=%d\n",++a);

}

6

Can lead to ambiguities…

#include<stdio.h>

main()

{

int a, s;

a=1;

printf(“++a=%d,a++=\n",++a,a++);

}

Conditions and Branching

7

 Think about mathematical definitions like the
following. Suppose we want to assign to y the
absolute value of an integer (or real number)
x. Mathematically, we can express this idea
as:

 y=0 if x = 0,

 y = x if x > 0,

 -x if x < 0.

Fibonacci numbers

 Fn= 0 if n = 0,

 Fn = 1 if n = 1,

 Fn = Fn-1 + Fn-2 if n >= 2.

8

Conditional World

 If your program has to work in such a
conditional world, you need two constructs:
 A way to specify conditions (like x < 0, or n >= 2).

 A way to selectively choose different blocks of
statements depending on the outcomes of the
condition checks.

Logical Conditions

 Let us first look at the rendering of logical
conditions in C.

 A logical condition evaluates to a Boolean
value, i.e., either "true" or "false".

 For example, if the variable x stores the value
15, then the logical condition x > 10 is true,
whereas the logical condition x > 100 is false.

9

Mathematical Relations

E1 evaluates to a value larger than or equal to E2E1 >= E2>=

E1 evaluates to a value larger than E2E1 > E2>

E1 evaluates to a value smaller than or equal to E2E1 <= E2<=

E1 evaluates to a value smaller than E2E1 < E2<

E1 and E2 evaluate to different values E1 != E2!=

E1 and E2 evaluate to the same value E1 == E2==

Condition is true iffUsageRelational operator

Examples

 Let x and y be integer variables holding the
values 15 and 40 at a certain point in time. At
that time, the following truth values hold:
 x == y False
 x != y True
 y % x == 10 True
 600 < x * y False
 600 <= x * y True
 'B' > 'A' True
 x / 0.3 == 50 False (due to floating point errors)

10

Booleaan Values in C
 A funny thing about C is that it does not support any Boolean data

type.
 Instead it uses any value (integer, floating point, character, etc.) as

a Boolean value.
 Any non-zero value of an expression evaluates to "true", and the

zero value evaluates to "false". In fact, C allows expressions as
logical conditions.

 Example:
 0 False
 1 True
 6 - 2 * 3 False
 (6 - 2) * 3 True
 0.0075 True
 0e10 False
 'A' True
 '\0' False
 x = 0 False
 x = 1 True

 The last two examples point out the potential danger of mistakenly
writing = in place of ==. Recall that an assignment returns a value,
which is the value that is assigned.

Logical Operators

C is false !CNOT

Either C1 or C2 or both are true C1 || C2OR

Both C1 and C2 are true C1 && C2AND

True if and only if SyntaxLogical operator

11

Examples

 (7*7 < 50) && (50 < 8*8) True

 (7*7 < 50) && (8*8 < 50) False

 (7*7 < 50) || (8*8 < 50) True

 !(8*8 < 50) True

 ('A' > 'B') || ('a' > 'b') False

 ('A' > 'B') || ('A' < 'B') True

 ('A' < 'B') && !('a' > 'b') True

Note

 Notice that here is yet another source of
logical bug. Using a single & and | in order to
denote a logical operator actually means
letting the program perform a bit-wise
operation and possibly ending up in a
logically incorrect answer

12

Associativity of Logical Operators

Left Binary||

Left Binary&&

Left Binary== !=

Left Binary< <= > >=

Right Unary!

AssociativityTypeOperator(s)

Examples

 x <= y && y <= z || a >= b is equivalent to
 ((x <= y) && (y <= z)) || (a >= b).

 C1 && C2 && C3 is equivalent to
 (C1 && C2) && C3.

 a > b > c is equivalent to
 (a > b) > c.

13

The If Statement

 C Statement:

if(Condition)

Block1;

scanf("%d",&x);

if (x < 0) x = -x;

x=x+1;

The If else Statement

 C Statement:
if (Condition)
{ Block 1 }
else { Block 2 }

scanf("%d",&x);
if (x >= 0) y = x;
else y = -x;
x=x+1;

14

The ternary statement

 Consider the following special form of the if-else
statement:

 if (C) v = E1; else v = E2; Here depending upon the
condition C, the variable v is assigned the value of
either the expression E1 or the expression E2. This
can be alternatively described as:

 v = (C) ? E1 : E2; Here is an explicit example.
Suppose we want to compute the larger of two
numbers x and y and store the result in z. We can
write:

 z = (x >= y) ? x : y;

