
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Link for slides

 http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PDS/index.htm

2

Assignments

Ternary Operator

 Consists of two symbols: ? and :
 example,

larger = (i > j) : i : j;

 i and j are two test expressions.

 Depending on whether i > j, larger (the variable on
the left) is assigned.
 if (i > j), larger = i

 else (i,e i<=j), larger = j

 This is the only operator in C which takes three
operands.

3

Comma Operator

 int i, j;

 i=(j=1,j+10);

 What is the result? j=11.

Operator Precedence and Associativity

 An explicitly parenthesized arithmetic (and/or
logical) expression clearly indicates the sequence of
operations to be performed on its arguments.

 However, it is quite common that we do not write all
the parentheses in such expressions.

 Instead, we use some rules of precedence and
associativity, that make the sequence clear.

 For example, the expression
 a + b * c conventionally stands for

 a + (b * c)
 and not for (a + b) * c

4

Another ambiguity

 Let us look at the expression a - b - c
 Now the common operand b belongs to two same

operators (subtraction).
 They have the same precedence. Now we can

evaluate this as
 (a - b) - c or as
 a - (b - c)
 Again the two expressions may evaluate to different values.
 The convention is that the first interpretation is correct.

 In other words, the subtraction operator is left-
associative.

Associativity and Precedence

right binary= += -= *= etc.

left binary| ^

left binary&

left binary<< >>

left binary+ -

left binary* / %

right unary- ~

non-associative unary++ --

AssociativityTypeOperator(s)

5

Unary operators

 Consider ++a and a++
 there is a subtle difference between the two.
 Recall that every assignment returns a value.
 The increment (or decrement) expressions ++a and a++

are also assignment expressions.
 Both stand for "increment the value of a by 1". But

then which value of a is returned by this expression?
We have the following rules:
 For a++ the older value of a is returned and then the value

of a is incremented. This is why it is called the post-
increment operation.

 For ++a the value of a is first incremented and this new
(incremented) value of a is returned. This is why it is called
the pre-increment operation.

A sample code

#include<stdio.h>

main()

{

int a, s;

a=1;

printf("a++=%d\n",a++);

printf("++a=%d\n",++a);

}

6

Can lead to ambiguities…

#include<stdio.h>

main()

{

int a, s;

a=1;

printf(“++a=%d,a++=\n",++a,a++);

}

Conditions and Branching

7

 Think about mathematical definitions like the
following. Suppose we want to assign to y the
absolute value of an integer (or real number)
x. Mathematically, we can express this idea
as:

 y=0 if x = 0,

 y = x if x > 0,

 -x if x < 0.

Fibonacci numbers

 Fn= 0 if n = 0,

 Fn = 1 if n = 1,

 Fn = Fn-1 + Fn-2 if n >= 2.

8

Conditional World

 If your program has to work in such a
conditional world, you need two constructs:
 A way to specify conditions (like x < 0, or n >= 2).

 A way to selectively choose different blocks of
statements depending on the outcomes of the
condition checks.

Logical Conditions

 Let us first look at the rendering of logical
conditions in C.

 A logical condition evaluates to a Boolean
value, i.e., either "true" or "false".

 For example, if the variable x stores the value
15, then the logical condition x > 10 is true,
whereas the logical condition x > 100 is false.

9

Mathematical Relations

E1 evaluates to a value larger than or equal to E2E1 >= E2>=

E1 evaluates to a value larger than E2E1 > E2>

E1 evaluates to a value smaller than or equal to E2E1 <= E2<=

E1 evaluates to a value smaller than E2E1 < E2<

E1 and E2 evaluate to different values E1 != E2!=

E1 and E2 evaluate to the same value E1 == E2==

Condition is true iffUsageRelational operator

Examples

 Let x and y be integer variables holding the
values 15 and 40 at a certain point in time. At
that time, the following truth values hold:
 x == y False
 x != y True
 y % x == 10 True
 600 < x * y False
 600 <= x * y True
 'B' > 'A' True
 x / 0.3 == 50 False (due to floating point errors)

10

Booleaan Values in C
 A funny thing about C is that it does not support any Boolean data

type.
 Instead it uses any value (integer, floating point, character, etc.) as

a Boolean value.
 Any non-zero value of an expression evaluates to "true", and the

zero value evaluates to "false". In fact, C allows expressions as
logical conditions.

 Example:
 0 False
 1 True
 6 - 2 * 3 False
 (6 - 2) * 3 True
 0.0075 True
 0e10 False
 'A' True
 '\0' False
 x = 0 False
 x = 1 True

 The last two examples point out the potential danger of mistakenly
writing = in place of ==. Recall that an assignment returns a value,
which is the value that is assigned.

Logical Operators

C is false !CNOT

Either C1 or C2 or both are true C1 || C2OR

Both C1 and C2 are true C1 && C2AND

True if and only if SyntaxLogical operator

11

Examples

 (7*7 < 50) && (50 < 8*8) True

 (7*7 < 50) && (8*8 < 50) False

 (7*7 < 50) || (8*8 < 50) True

 !(8*8 < 50) True

 ('A' > 'B') || ('a' > 'b') False

 ('A' > 'B') || ('A' < 'B') True

 ('A' < 'B') && !('a' > 'b') True

Note

 Notice that here is yet another source of
logical bug. Using a single & and | in order to
denote a logical operator actually means
letting the program perform a bit-wise
operation and possibly ending up in a
logically incorrect answer

12

Associativity of Logical Operators

Left Binary||

Left Binary&&

Left Binary== !=

Left Binary< <= > >=

Right Unary!

AssociativityTypeOperator(s)

Examples

 x <= y && y <= z || a >= b is equivalent to
 ((x <= y) && (y <= z)) || (a >= b).

 C1 && C2 && C3 is equivalent to
 (C1 && C2) && C3.

 a > b > c is equivalent to
 (a > b) > c.

13

The If Statement

 C Statement:

if(Condition)

Block1;

scanf("%d",&x);

if (x < 0) x = -x;

x=x+1;

The If else Statement

 C Statement:
if (Condition)
{ Block 1 }
else { Block 2 }

scanf("%d",&x);
if (x >= 0) y = x;
else y = -x;
x=x+1;

14

The ternary statement

 Consider the following special form of the if-else
statement:

 if (C) v = E1; else v = E2; Here depending upon the
condition C, the variable v is assigned the value of
either the expression E1 or the expression E2. This
can be alternatively described as:

 v = (C) ? E1 : E2; Here is an explicit example.
Suppose we want to compute the larger of two
numbers x and y and store the result in z. We can
write:

 z = (x >= y) ? x : y;

