
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Analysis of Algorithms

2

Sorting problem

• Input: A sequence of n numbers,
a1,a2,…,an

• Output: A permutation (reordering)
(a1’,a2’,…,an’) of the input sequence such
that a1’≤a2’ ≤… ≤an’
– Comment: The number that we wish to sort

are also known as keys

Insertion Sort

• Efficient for sorting small numbers

• In place sort: Takes an array A[0..n-1]
(sequence of n elements) and arranges
them in place, so that it is sorted.

3

It is always good to start with numbers

5 4 32 6 1

5 4 32 6 12 54 5
j=0

611 54121 3 63 53 4
j=1j=2j=3j=4j=5

Invariant property in the loop:

At the start of each iteration of the algorithm, the subarray a[0...j-1]
contains the elements originally in a[0..j-1] but in sorted order

Pseudo Code

• Insertion-sort(A)
1. for j=1 to (length(A)-1)
2. do key = A[j]
3. #Insert A[j] into the sorted sequnce A[0...j-1]
4. i=j-1
5. while i>0 and A[i]>key
6. do A[i+1]=A[i]
7. i=i-1

8. A[i+1]=key //as A[i]<=key, so we place
//key on the right side of A[i]

4

Lets analyze the Insertion sort

• The time taken to sort depends on the fact
that we are sorting how many numbers

• Also, the time to sort may change
depending upon whether the array is
almost sorted (can you see if the array
was sorted we had very little job).

• So, we need to define the meaning of the
input size and running time.

Input Size

• Depends on the notion of the problem we are studying.

• Consider sorting of n numbers. The input size is the
cardinal number of the set of the integers we are sorting.

• Consider multiplying two integers. The input size is the
total number of bits required to represent the numbers.

• Sometimes, instead of one numbers we represent the
input by two numbers. E.g. graph algorithms, where the
input size is represented by both the number of edges
(E) and the number of vertices (V)

5

Running Time

• Proportional to the Number of primitive
operations or steps performed.

• Assume, in the pseudo-code a constant
amount of time is required for each line.

• Assume that the ith line requires ci, where
ci is a constant.

• There is no concurrency

Run Time of Insertion Sort

The total time required is the sum of that for each statement:

Steps Cost Times

1

2

3

for j=1 to n-1 c n

 key=A[j] c n-1

 i=j-1 c n-
n-1

4 j
j=1

n-1

5 j
j=1

6

1

 while i>0 and A[i]>key c t

 do A[i+1]=A[i] c (t 1)

 i=i-1 c

n-1

j
j=1

7

 (t 1)

 A[i+1]=key c (n-1)

n-1 n-1 n-1

1 2 3 4 j 5 j 6 j 7
j=1 j=1 j=1

T(n)=c (1) (1) t (t 1) (t 1) (n-1)n c n c n c c c c

6

Best Case

• If the array is already sorted:

– While loop sees in 1 check that A[i]<key
and so while loop terminates. Thus tj=1
and we have:

The run time is thus a linear function of n

n-1 n-1 n-1

1 2 3 4 5 6 7
j=1 j=1 j=1

1 2 3 4 7 2 3 4 7

T(n)=c (1) (1) 1 (1 1) (1 1) (n-1)

 =(c) ()

n c n c n c c c c

c c c c n c c c c

Worst Case: The algorithm cannot
run slower!

• If the array is arranged in reverse sorted array:
– While loop requires to perform the comparisons with

A[j-1] to A[0], that is tj=j

The run time is thus a quadratic function of n

n-1 n-1 n-1

1 2 3 4 5 6 7
j=1 j=1 j=1

25 6 5 64 4
1 2 3 5 6 2 3 7

T(n)=c (1) (1) j (j 1) (j 1) (n-1)

3 3c
 =() () ()

2 2 2 2 2 2

n c n c n c c c c

c c c cc
n c c c n c c c c c

7

Divide & Conquer Algorithms

• Many types of problems are solvable by
reducing a problem of size n into some
number a of independent subproblems,
each of size n/b, where a1 and b>1.

• The time complexity to solve such
problems is given by a recurrence
relation:
– T(n) = a·T(n/b) + g(n)

Time to combine the
solutions of the

subproblems into a
solution

of the original problem.
Time for each subproblem

Why the name?

• Divide: This step divides the problem into
one or more substances of the same
problem of smaller size

• Conquer: Provides solutions to the bigger
problem by using the solutions of the
smaller problem by some additional work.

8

Divide and Conquer Examples

• Binary search: Break list into 1 sub-
problem (smaller list) (so a=1) of size
n/2 (so b=2).
– So T(n) = T(n/2)+ 2 (g(n)=c constant)

– g(n)=2, because two comparisons are needed
to conquer. One to decide which half of the
list to use. Second to decide whether any
term in the list remain.

Solving the recurrence

2

Assume, n=2 log()

() (/ 2) 2

 = (/ 4) 2 2

 (/ 2) 2.2

 =...

 = (/ 2) 2.

 = (1) 2log() 1 2log()

 =O(log n)

t

t

t n

T n T n

T n

T n

T n t

T n n

9

Merge Sort

2 2

, 2

() 2 (/ 2)

 =2[2T(n/4)+c(n/2)]+cn

 =2 (/ 2) 2

 =2 (/ 2)

 =2 (1)

 =n+cnlog(n)=O(nlog n)

t

t t

t

Assume n

T n T n cn

T n cn

T n tcn

T tcn

Best of Luck for End Sems!

