
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Numbers in Computers

8 9 10 11

12 13 14 15

4 5 6 7

12 13 14 15

2 3 6 7

10 11 14 15

1 3 5 7

9 11 13 15

Think of a number between 1 and 15

Binary Numbers

 Number 7 appears on the four cards in the pattern
‘No, Yes, Yes, Yes’

 The number 7 in binary code is 0111

 This is the Computers Language!

Yes = 1 No = 0

Why binary?

 Information is stored in computer via voltage levels.

 Using decimal would require 10 distinct and reliable levels
for each digit.

 This is not feasible with reasonable reliability and financial
constraints.

 Everything in computer is stored using binary: numbers,
text, programs, pictures, sounds, videos, ...

Bit, Byte, and Word

0

0 1 1 0 1 1 0 0

0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1

0 0 0 0 0 1 0 0

cont’d

A bit is a size that can store 1 digit of a binary number, 0 or 1.

A byte is 8 bits, which can store eight 0’s
or 1’s.

A word is either 32 or 64 bits, depending on
computers. Regular PC’s are 32-bit word in
size, higher-end workstations are 64-bit. Word
size is the size of the registers.

What do these bits mean is a matter of interpretation! All
information in a computer are represented in a uniform
format of bit patterns.

Binary Nonnegative Integers

Given a 32-bit pattern, e.g.,

0000 0000 … 0000 1101 1100,

it can represent the integer (if you interpret it that way)

Note that if we use 32-bit word, the smallest number is 0, and the
largest number is 11111111 11111111 11111111 11111111, which
is 232-1=4294967295. Numbers bigger than this cannot be
represented. If such things happen in a calculation, we say it
overflowed. Such interpretation is called unsigned int in the
programming language C.

2 3
0 1 2 32 2 2 2 , 0,1k

k kn a a a a a a

a0 lowest bita31 highest bit

In General (binary)

2n - 1

MaxMin

0n

Binary

No. of bits

Negative Numbers

 Popular schemes:
 Signed Magnitude

 One’s Complement

 Two’s Complement

Sign-Magnitude

 Extra bit on left to represent sign
 0 = positive value

 1 = negative value

 E.g., 6-bit sign-magnitude representation of
+5 and –5:

+5: 0 0 0 1 0 1

+ve 5

-5: 1 0 0 1 0 1

-ve 5

Ranges (revisited)

Binary

Etc.

31-316306

15-153105

7-71504

3-3703

1-1302

101

MaxMax MinMin

Sign-magnitudeUnsigned
No. of bits

In General (revisited)

Binary

2
n-1

- 1-(2
n-1

- 1)2
n

- 10n

MaxMax MinMin

Sign-magnitudeUnsigned
No. of bits

Difficulties with Sign-Magnitude

 Two representations of zero
 Using 6-bit sign-magnitude…

 0: 000000

 0: 100000

 Arithmetic is awkward!

pp. 95-96

Complementary Representations
 9’s complement

 10’s complement

 1’s complement

 2’s complement

Exercises – Complementary Notations

 What is the 3-digit 10’s complement of 247?
 Answer:

 What is the 3-digit 10’s complement of 17?
 Answer:

 777 is a 10’s complement representation of what
decimal value?
 Answer:

Skip answer Answer

 What is the 3-digit 10’s complement of 247?
 Answer: 753

 What is the 3-digit 10’s complement of 17?
 Answer: 983

 777 is a 10’s complement representation of what
decimal value?
 Answer: 223

Exercises – Complementary Notations
Answer

Ones’ Complement

 Bitwise Not (simple)

 Used in UNIVAC

 Two representation for 0

Ones’ Complement

 binary decimal
11111110 -1

+ 00000010 +2
............ ...

1 00000000 0 <-- not the correct answer

1 +1 <-- add carry

............. ...
00000001 1 <-- correct answer

Two’s Complement

 Most common scheme of representing negative numbers in
computers

 Affords natural arithmetic (no special rules!)

 To represent a negative number in 2’s complement notation…
1. Decide upon the number of bits (n)

2. Find the binary representation of the +ve value in n-bits

3. Flip all the bits (change 1’s to 0’s and vice versa)

4. Add 1

Two’s Complement Example

 Represent -5 in binary using 2’s
complement notation

1. Decide on the number of bits

2. Find the binary representation of the +ve value in 6
bits

3. Flip all the bits

4. Add 1

6 (for example)

111010

111010
+ 1
111011

-5

000101
+5

Sign Bit

 In 2’s complement notation, the MSB is the
sign bit (as with sign-magnitude notation)
 0 = positive value

 1 = negative value

-5: 1 1 1 0 1 1

-ve

+5: 0 0 0 1 0 1

+ve 5 ? (previous slide)

“Complementary” Notation

 Conversions between positive and negative
numbers are easy

 For binary (base 2)…

+ve -ve

2’s C

2’s C

Example

+5

2’s C

-5

2’s C

+5

0 0 0 1 0 1

1 1 1 0 1 0
+ 1

1 1 1 0 1 1

0 0 0 1 0 0
+ 1

0 0 0 1 0 1

In General (revisited)

2
n

- 1

Max

0

Min

Unsigned

Binary

2
n-1

- 1-2
n-12

n-1
-1-(2

n-1
- 1)n

MaxMax MinMin

2’s complementSign-magnitude
No. of

bits

Negative Integers

 To represent negative numbers, we’ll agree that the
highest bit a31 representing sign, rather than
magnitude, 0 for positive, 1 for negative numbers.

 More precisely, all modern computers use 2’s
complement representations.

 The rule to get a negative number representation is:
first write out the bit pattern of the corresponding
positive number, complement all bits, then add 1.

Property of 2’s Complement Numbers

 Two’s complement m of a number n is such
that adding it together you get zero (m + n =
0, modulo word size)

 Thus m is interpreted as negative of n.
 The key point is that computer has a finite

word length, the last carry is thrown away.

2’s Complement, example

 1 in bits is 00000000 00000000 00000000 00000001

complementing all bits, we get

11111111 11111111 11111111 11111110

Add 1, we get representation for –1, as
11111111 11111111 11111111 11111111

00000000 00000000 00000000 00000001

+ 11111111 11111111 11111111 11111111

1 00000000 00000000 00000000 00000000

Decimal

1

–1

0

Overflow bit not
kept by computer

2’s Complement, another e.g.

 125 in bits is 00000000 00000000 00000000 01111101

complement all bits, we get

11111111 11111111 11111111 10000010

Add 1, we get representation for –125, as

11111111 11111111 11111111 10000011

00000000 00000000 00000000 01111111

+ 11111111 11111111 11111111 10000011

1 00000000 00000000 00000000 00000010

Decimal

127

–125

+2

Overflow bit not
kept by computer

What is -5 plus +5?

 Zero, of course, but let’s see

-5: 10000101
+5: +00000101

10001010

Sign-magnitude

-5: 11111011
+5: +00000101

00000000

Twos-complement

11111111

Signed and Unsigned Int

 If we interpret the number as unsigned, an
unsigned integer takes the range 0 to 232-1 (that is
000…000 to 1111….1111)

 If we interpret the number as signed value, the
range is –231 to 231-1 (that is 1000….000 to
1111…111, to 0, to 0111….1111).

 Who decide what interpretation to take? What if
we need numbers bigger than 232?

Addition, Multiplication, and Division in
Binary

0 0 0 1 0 0 1 1

0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0
+

0 1 1 1

0 1 0 1

0 1 1 1

0 1 1 1

1 0 0 0 1 1

+

1 0 0 1

1 0 0 0 1 0 0 1 0 1 0

1 0 0 0

1 0 1 0

1 0 0 0

1 0

–

–

75=35

74 8 = 9 remainder 2

19+37=56

Overflow - Explanation

 2147483645 + 2147483645 = -6
 Why?

 231 -1 = 2147483647 and has 32 bit binary representation
0111…111. This is largest 2’s complement 32 bit number.

 2147483645 would have representation
011111…101.

 When we add this to itself, we get
X = 1111…1010 (overflow)

 So, -X would be 000…0101 + 1 = 00…0110 = 6
 So, X must be -6.

Overflows in signed magnitude system

 In signed-magnitude representation, a carry
out means an overflows:

Ex: 0 1 0 1 1 (11)

0 0 1 1 0 (6)

0 1 0 0 0 1 (1)

The carry-out implies an overflow.

Overflows in complement system

 In both complement systems, however, a
carry out DOES NOT mean an overflows:

Ex: 13 – 8 = 5

0 1 1 0 1 (13)

1 1 0 0 0 (-8)

1 0 0 1 0 1 (5)

There is a carry-out, but there is no overflow.

Rule for overflow

 If X and Y (the two operands) are of different
signs there is no overflow, regardless of a
carry out.

 If X and Y are of the same sign and the sign
of the result is different from the signs of the
two operands, then an overflow occurs.

Examples

 1 1 0 0 1 (-7)

1 0 1 1 0 (-10)

1 0 1 1 1 1 (15) [Carry-out and overflow]

 0 0 1 1 1 (7)

0 1 0 1 0 (10)

1 0 0 0 1 (-15) [No-carry out but overflow]

Floating Point Numbers (reals)

 To represent numbers like 0.5, 3.1415926, etc, we
need to do something else. First, we need to
represent them in binary, as

E.g. 11.00110 for 2+1+1/8+1/16=3.1875
 Next, we need to rewrite in scientific notation, as

1.100110 21. That is, the number will be written in
the form:
1.xxxxxx… 2e

2 2 3
2 1 0 1 2 3

1
2 2 2 2 2 2

2
m k

m kn a a a a a a a a

x = 0 or 1

Figure 3-7

Changing fractions to binary

 Multiply the fraction by 2,…

Example 17Example 17

Transform the fraction 0.875 to binary

SolutionSolution

Write the fraction at the left corner. Multiply the Write the fraction at the left corner. Multiply the
number continuously by 2 and extract the number continuously by 2 and extract the
integer part as the binary digit. Stop when the integer part as the binary digit. Stop when the
number is 0.0.number is 0.0.

0.875 1.750 1.5 1.0 0.0

0 . 1 1 1

Example 18Example 18

Transform the fraction 0.4 to a binary of 6 bits.

SolutionSolution

Write the fraction at the left cornet. Multiply the Write the fraction at the left cornet. Multiply the
number continuously by 2 and extract the number continuously by 2 and extract the
integer part as the binary digit. You can never integer part as the binary digit. You can never
get the exact binary representation. Stop when get the exact binary representation. Stop when
you have 6 bits.you have 6 bits.

0.4 0.8 1.6 1.2 0.4 0.8 1.6

0 . 0 1 1 0 0 1

Example of normalizationExample of normalization

MoveMove

 6
 2
6
3

Original NumberOriginal Number

Normalized

 x
 x
x
 x

Normalization

 Sign, exponent, and mantissa

Figure 3-8

IEEE standards for floating-point representation

Example 19Example 19

Show the representation of the normalized
number + 26 x 1.01000111001

SolutionSolution

The sign isThe sign is positivepositive. . The Excess_127 representation of The Excess_127 representation of
the exponent isthe exponent is 133133. . You add extra 0s on the right to You add extra 0s on the right to
make it 23 bits. The number in memory is stored as:make it 23 bits. The number in memory is stored as:

00 10000101 10000101 0100011100101000111001000000000000000000000000

Example of floatingExample of floating--point representationpoint representation

SignSign

1
0
1

Mantissa

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number

-22 x 1.11000011
+2-6 x 1.11001
-2-3 x 1.110011

ExponentExponent

10000001
01111001
01111100

Example 20Example 20

Interpret the following 32-bit floating-point
number

1 01111100 11001100000000000000000

SolutionSolution

The sign is negative. The exponent is The sign is negative. The exponent is ––3 (124 3 (124 ––

127). The number after normalization is127). The number after normalization is

--22--33 x 1.110011x 1.110011

Limitations in 32-bit Integer and Floating
Point Numbers
 Limited range of values (e.g. integers only from –231

to 231–1)

 Limited resolution for real numbers. E.g., if x is a
machine representable value, the next value is x + ε
(for some small ε). There is no value in between.
This causes “floating point errors” in calculation.
The accuracy of a single precision floating point
number is about 6 decimal places.

Limitations of Single Precision Numbers

 Given the representation of the single
precision floating point number format, what
is the largest magnitude possible? What is
the smallest number possible?

 With floating point number, it can happen that
1 + ε = 1. What is that largest ε?

Floating Point Rounding Error

 Consider 4-bit mantissa floating point
addition:

 1.01022 + 1.1012-1

1.010000 22

0.001101 22

1.011101 22

1.100 22

+ Shift exponent to that of the
large number

Round to 4 bits

In decimal, it means 5.0 + 0.8125 6.0

Representation of Characters, the ASCII
code

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h I j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

How to read the table: the top line specifies the last digit
in hexadecimal, the leftmost column specifies the higher
value digit. E.g., at location 4116 (=0100 00012=6510) is
the letter ‘A’.

Base-16 Number, or Hexadecimal

 Instead of writing out strings of 0’s and 1’s, it is easier to read if
we group them in group of 4 bits. A four bit numbers can vary
from 0 to 15, we denote them by 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

binary hexadecimal decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

binary hexadecimal decimal

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Program as Numbers

 High level programming language

C = A + B;

 Assembly language

add $5, $10, $3

 Machine code (MIPS computer)

bit 0
bit 31

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

Not used source 1 source 2 destination not used operation

$10 $3 $5 add

Graphics as Numbers

A picture like this is also
represented on computer
by bits. If you magnify the
picture greatly, you’ll see
square “pixels” which is
either black or white.
These can be represented
as binary 1’s and 0’s.

Color can also be presented
with numbers, if we allow
more bits per pixel.

Music as Numbers – MP3 format

 CD music is sampled 44,100 times per
second (44.1 kHertz), each sample is 2 bytes
long

 The digital music signals are compressed, at
a rate of 10 to 1 or more, into MP3 format

 The compact MP3 file can be played back on
computer or MP3 players

Some other points

 Computer Science starts counting from 0 (why?)
 We have to perform operations in a finite space, unlike what we

have done when we counted with real numbers, which were
infinite…
 imagine a world in which we are born, grow older by one year,

become 1, 2, 3,…,62, 63 then again 0. Say, we decide we will not
grow older beyond 64… strange…but computer does similar
things!

 A computer counting our age will count like 0, 1, 2, 3, …, 62, 63,
0,…! This is called modular arithmetic and gives lot of interesting
results. Can you tell me from the above count values, some
information of our computer…?

Modulo Arithmetic

 Consider the set of number
{0, … ,7}

 Suppose all arithmetic
operations were finished by
taking the result modulus 8

 3 + 6 = 9, 9 mod 8 = 1

 3 + 6 = 1

 3*5 = 15, 15 mod 8 = 7

 3*5 = 7

1

2

3

4

5

6

7

0

Modulo Arithmetic: Computing in a
finite world What is the additive inverse of 7 in

modulo arithmetics?

 7 + x = 0

 7 + 1 = 0

 0 and 4 are their own additive
inverses

 Does each number also have a
multiplicative inverse?
 7 x 7 = 1

 Does each number has a
multiplicative inverse?

 What if m=11? Now does each
number have a multiplicative
inverse?

1

2

3

4

5

6

7

0

Summary

 All information in computer are represented by
bits. These bits encode information. It’s
meaning has to be interpreted in a specific way.

 We’ve learnt how to represent unsigned integer,
negative integer, floating pointer number, as well
as ASCII characters.

 Computers have to compute in a finite world.

