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Numbers in Computers



8 9 10 11

12 13 14 15

4 5 6 7

12 13 14 15

2 3 6 7

10 11 14 15

1 3 5 7

9 11 13 15

Think of a number between 1 and 15

Binary Numbers

 Number 7 appears on the four cards in the pattern 
‘No, Yes, Yes, Yes’

 The number 7 in binary code is 0111

 This is the Computers Language!

Yes = 1 No = 0



Why binary?

 Information is stored in computer via voltage levels.

 Using decimal would require 10 distinct and reliable levels 
for each digit.

 This is not feasible with reasonable reliability and financial 
constraints.

 Everything in computer is stored using binary: numbers, 
text, programs, pictures, sounds, videos, ...

Bit, Byte, and Word

0

0  1   1  0 1  1   0  0

0  1   1  1 0  1   1  0 0  1   1  1 1  0   0  1 1  1   1  0 0  0   1  1

0  0   0  0 0  1   0  0

cont’d

A bit is a size that can store 1 digit of a binary number, 0 or 1.

A byte is 8 bits, which can store eight 0’s 
or 1’s.

A word is either 32 or 64 bits, depending on 
computers.  Regular PC’s are 32-bit word in 
size, higher-end workstations are 64-bit. Word 
size is the size of the registers.

What do these bits mean is a matter of interpretation!  All 
information in a computer are represented in a uniform 
format of bit patterns.



Binary Nonnegative Integers

Given a 32-bit pattern, e.g.,  

0000 0000 … 0000 1101 1100,

it can represent the integer (if you interpret it that way)

Note that if we use 32-bit word, the smallest number is 0, and the 
largest number is 11111111 11111111 11111111 11111111, which 
is 232-1=4294967295.  Numbers bigger than this cannot be 
represented.  If such things happen in a calculation, we say it 
overflowed.  Such interpretation is called unsigned int in the 
programming language C.  
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Negative Numbers

 Popular schemes:
 Signed Magnitude 

 One’s Complement

 Two’s Complement

Sign-Magnitude

 Extra bit on left to represent sign
 0 = positive value

 1 = negative value

 E.g., 6-bit sign-magnitude representation of 
+5 and –5:

+5: 0 0 0 1 0 1

+ve 5

-5: 1 0 0 1 0 1

-ve 5



Ranges (revisited)
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Difficulties with Sign-Magnitude

 Two representations of zero
 Using 6-bit sign-magnitude…

 0: 000000

 0: 100000

 Arithmetic is awkward!

pp. 95-96

Complementary Representations
 9’s complement

 10’s complement

 1’s complement

 2’s complement



Exercises – Complementary Notations

 What is the 3-digit 10’s complement of 247?
 Answer:

 What is the 3-digit 10’s complement of 17?
 Answer:

 777 is a 10’s complement representation of what 
decimal value?
 Answer:

Skip answer Answer

 What is the 3-digit 10’s complement of 247?
 Answer: 753

 What is the 3-digit 10’s complement of 17?
 Answer: 983

 777 is a 10’s complement representation of what 
decimal value?
 Answer: 223

Exercises – Complementary Notations
Answer



Ones’ Complement

 Bitwise Not (simple)

 Used in UNIVAC

 Two representation for 0 

Ones’ Complement

 binary decimal
11111110 -1 

+ 00000010 +2 
............ ... 

1 00000000 0 <-- not the correct answer   

1 +1 <-- add carry

............. ... 
00000001 1 <-- correct answer 



Two’s Complement

 Most common scheme of representing negative numbers in 
computers

 Affords natural arithmetic (no special rules!)

 To represent a negative number in 2’s complement notation…
1. Decide upon the number of bits (n)

2. Find the binary representation of the +ve value in n-bits

3. Flip all the bits (change 1’s to 0’s and vice versa)

4. Add 1

Two’s Complement Example

 Represent -5 in binary using 2’s 
complement notation

1. Decide on the number of bits

2. Find the binary representation of the +ve value in 6 
bits

3. Flip all the bits

4. Add 1

6 (for example)

111010

111010
+     1
111011

-5

000101
+5



Sign Bit

 In 2’s complement notation, the MSB is the 
sign bit (as with sign-magnitude notation)
 0 = positive value

 1 = negative value

-5:  1 1 1 0 1 1

-ve

+5:  0 0 0 1 0 1

+ve 5 ? (previous slide)

“Complementary” Notation

 Conversions between positive and negative 
numbers are easy

 For binary (base 2)…

+ve -ve

2’s C

2’s C



Example

+5

2’s C

-5

2’s C

+5

0 0 0 1 0 1

1 1 1 0 1 0
+ 1

1 1 1 0 1 1

0 0 0 1 0 0
+          1

0 0 0 1 0 1

In General (revisited)
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Negative Integers

 To represent negative numbers, we’ll agree that the 
highest bit a31 representing sign, rather than 
magnitude, 0 for positive, 1 for negative numbers.

 More precisely, all modern computers use 2’s 
complement representations.

 The rule to get a negative number representation is: 
first write out the bit pattern of the corresponding 
positive number, complement all bits, then add 1.

Property of 2’s Complement Numbers

 Two’s complement m of a number n is such 
that adding it together you get zero (m + n = 
0,  modulo word size)

 Thus m is interpreted as negative of n.
 The key point is that computer has a finite 

word length, the last carry is thrown away. 



2’s Complement, example

 1 in bits is 00000000 00000000 00000000 00000001

complementing all bits, we get 

11111111 11111111 11111111 11111110

Add 1, we get representation for –1, as 
11111111 11111111 11111111 11111111

00000000 00000000 00000000 00000001

+ 11111111 11111111 11111111 11111111

1 00000000 00000000 00000000 00000000

Decimal

1 

–1

0

Overflow bit not 
kept by computer

2’s Complement, another e.g.

 125 in bits is 00000000 00000000 00000000 01111101

complement all bits, we get

11111111 11111111 11111111 10000010

Add 1, we get representation for –125, as

11111111 11111111 11111111 10000011

00000000 00000000 00000000 01111111

+ 11111111 11111111 11111111 10000011

1 00000000 00000000 00000000 00000010

Decimal

127 

–125

+2

Overflow bit not 
kept by computer



What is -5 plus +5?

 Zero, of course, but let’s see

-5:   10000101
+5:  +00000101

10001010 

Sign-magnitude

-5:   11111011
+5:  +00000101

00000000  

Twos-complement

11111111

Signed and Unsigned Int

 If we interpret the number as unsigned, an 
unsigned integer takes the range 0 to 232-1 (that is 
000…000 to 1111….1111)

 If we interpret the number as signed value, the 
range is –231 to 231-1 (that is 1000….000 to 
1111…111, to 0, to 0111….1111).

 Who decide what interpretation to take?  What if 
we need numbers bigger than 232?



Addition, Multiplication, and Division in 
Binary

0 0 0 1 0 0 1 1

0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0
+

0 1 1 1

0 1 0 1

0 1 1 1

0 1 1 1

1 0 0 0 1 1

+



1 0 0 1

1 0 0 0  1 0 0 1 0 1 0

1 0 0 0

1 0 1 0

1 0 0 0

1 0

–

–

75=35

74  8 = 9 remainder 2

19+37=56

Overflow - Explanation

 2147483645 + 2147483645 = -6
 Why?

 231 -1 = 2147483647 and has 32 bit binary representation 
0111…111. This is largest 2’s complement 32 bit number. 

 2147483645 would have representation
011111…101.

 When we add this to itself, we get
X = 1111…1010 (overflow)

 So, -X would be 000…0101 + 1 = 00…0110 = 6
 So, X must be -6.



Overflows in signed magnitude system

 In signed-magnitude representation, a carry 
out means an overflows:

Ex:         0      1 0 1 1    (11)

0      0 1 1 0     (6)

-----------------------------

0   1 0 0 0 1     (1)

The carry-out implies an overflow.

Overflows in complement system

 In both complement systems, however, a 
carry out DOES NOT mean an overflows:

Ex:  13 – 8 = 5

0 1 1 0 1 (13)

1 1 0 0 0  (-8)

-----------------------------

1 0 0 1 0 1  (5)

There is a carry-out, but there is no overflow.



Rule for overflow

 If X and Y (the two operands) are of different 
signs there is no overflow, regardless of a 
carry out.

 If X and Y are of the same sign and the sign 
of the result is different from the signs of the 
two operands, then an overflow occurs.

Examples

 1 1 0 0 1 (-7)

1 0 1 1 0 (-10)

-----------------------

1 0 1 1 1 1 (15)  [Carry-out and overflow]

 0 0 1 1 1 (7)

0 1 0 1 0 (10)

------------------------

1 0 0 0 1 (-15)  [No-carry out but overflow] 



Floating Point Numbers (reals)

 To represent numbers like 0.5, 3.1415926, etc, we 
need to do something else.  First, we need to 
represent them in binary, as

E.g.   11.00110  for 2+1+1/8+1/16=3.1875
 Next, we need to rewrite in scientific notation, as 

1.100110 21.  That is, the number will be written in 
the form:
1.xxxxxx…  2e

2 2 3
2 1 0 1 2 3

1
2 2 2 2 2 2

2
m k

m kn a a a a a a a a  
                  

x = 0 or 1

Figure 3-7

Changing fractions to binary

 Multiply the fraction by 2,…



Example 17Example 17

Transform the fraction 0.875 to binary

SolutionSolution

Write the fraction at the left corner. Multiply the Write the fraction at the left corner. Multiply the 
number continuously by 2 and extract the number continuously by 2 and extract the 
integer part as the binary digit. Stop when the integer part as the binary digit. Stop when the 
number is 0.0.number is 0.0.

0.875   1.750   1.5     1.0    0.0

0     .  1             1              1

Example 18Example 18

Transform the fraction 0.4 to a binary of 6 bits.

SolutionSolution

Write the fraction at the left cornet. Multiply the Write the fraction at the left cornet. Multiply the 
number continuously by 2 and extract the number continuously by 2 and extract the 
integer part as the binary digit. You can never integer part as the binary digit. You can never 
get the exact binary representation. Stop when get the exact binary representation. Stop when 
you have 6 bits.you have 6 bits.

0.4   0.8   1.6     1.2    0.4   0.8   1.6

0    .  0           1             1             0           0       1



Example of normalizationExample of normalization

MoveMove
------------
 6
 2
6 
3 

Original NumberOriginal Number
------------







Normalized
------------

 x 
 x 
x 
 x 

Normalization

 Sign, exponent, and mantissa 

Figure 3-8

IEEE standards for floating-point representation



Example 19Example 19

Show the representation of the normalized 
number  + 26 x  1.01000111001

SolutionSolution

The sign isThe sign is positivepositive. . The Excess_127 representation of The Excess_127 representation of 
the exponent isthe exponent is 133133. . You add extra 0s on the right to You add extra 0s on the right to 
make it 23 bits. The number in memory is stored as:make it 23 bits. The number in memory is stored as:

00 10000101 10000101 0100011100101000111001000000000000000000000000

Example of floatingExample of floating--point representationpoint representation

SignSign
----
1
0
1

Mantissa
-------------------------------

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number 
------------

-22 x  1.11000011
+2-6 x  1.11001
-2-3 x  1.110011

ExponentExponent
-----------
10000001
01111001
01111100



Example 20Example 20

Interpret the following 32-bit floating-point 
number

1 01111100 11001100000000000000000

SolutionSolution

The sign is negative. The exponent is The sign is negative. The exponent is ––3 (124 3 (124 ––

127). The number after normalization is127). The number after normalization is

--22--33 x   1.110011x   1.110011

Limitations in 32-bit Integer and Floating 
Point Numbers
 Limited range of values (e.g. integers only from –231

to 231–1)

 Limited resolution for real numbers.  E.g., if x is a 
machine representable value, the next value is x + ε
(for some small ε).  There is no value in between.  
This causes “floating point errors” in calculation.  
The accuracy of a single precision floating point 
number is about 6 decimal places.



Limitations of Single Precision Numbers

 Given the representation of the single 
precision floating point number format, what 
is the largest magnitude possible?  What is 
the smallest number possible?

 With floating point number, it can happen that 
1 + ε = 1.  What is that largest ε? 

Floating Point Rounding Error

 Consider 4-bit mantissa floating point 
addition:

 1.01022 + 1.1012-1

1.010000  22

0.001101  22

1.011101  22

1.100       22

+ Shift exponent to that of the 
large number

Round to 4 bits

In decimal, it means  5.0 + 0.8125  6.0



Representation of Characters, the ASCII 
code

0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS  HT  LF  VT  FF  CR  SO  SI 

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM  SUB ESC FS  GS  RS  US 

2 SP  !   "   #   $   %   &   '   (   )   *   +   ,   - .   / 

3 0   1   2   3   4   5   6   7   8   9   :   ;   <   =   >   ? 

4 @   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O 

5 P   Q   R   S   T   U   V   W   X   Y   Z   [   \ ]   ^   _ 

6 `   a   b   c   d   e   f   g   h   I   j   k   l   m   n   o 

7 p   q   r   s   t   u   v   w   x   y   z   {   |   }   ~  DEL

How to read the table: the top line specifies the last digit 
in hexadecimal, the leftmost column specifies the higher 
value digit.  E.g., at location 4116 (=0100 00012=6510) is 
the letter ‘A’.

Base-16 Number, or Hexadecimal

 Instead of writing out strings of 0’s and 1’s, it is easier to read if 
we group them in group of 4 bits.  A four bit numbers can vary 
from 0 to 15, we denote them by 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

binary   hexadecimal    decimal

0000     0                    0

0001     1                    1

0010     2                    2

0011     3                    3

0100     4                    4

0101     5                    5

0110     6                    6

0111     7                    7 

binary   hexadecimal    decimal

1000     8                    8

1001     9                    9

1010     A                    10

1011     B                    11

1100     C                    12

1101     D                    13

1110     E                    14

1111     F                    15



Program as Numbers

 High level programming language

C = A + B;

 Assembly language

add $5, $10, $3

 Machine code (MIPS computer)

bit 0
bit 31

0  0   0   0  0  0    0   1  0  1   0    0  0  0   1  1    0   0 1   0  1    0  0   0  0   0    1  0  0   0  0   0

Not used         source 1     source 2    destination  not used operation

$10 $3 $5 add

Graphics as Numbers

A picture like this is also 
represented on computer 
by bits.   If you magnify the 
picture greatly, you’ll see 
square “pixels” which is 
either black or white.   
These can be represented 
as binary 1’s and 0’s.

Color can also be presented 
with numbers, if we allow 
more bits per pixel.  



Music as Numbers – MP3 format

 CD music is sampled 44,100 times per 
second (44.1 kHertz), each sample is 2 bytes 
long

 The digital music signals are compressed, at 
a rate of 10 to 1 or more, into MP3 format

 The compact MP3 file can be played back on 
computer or MP3 players

Some other points

 Computer Science starts counting from 0 (why?)
 We have to perform operations in a finite space, unlike what we 

have done when we counted with real numbers, which were 
infinite…
 imagine a world in which we are born, grow older by one year, 

become 1, 2, 3,…,62, 63 then again 0. Say, we decide we will not 
grow older beyond 64… strange…but computer does similar 
things!

 A computer counting our age will count like 0, 1, 2, 3, …, 62, 63, 
0,…! This is called modular arithmetic and gives lot of interesting
results. Can you tell me from the above count values, some 
information of our computer…? 



Modulo Arithmetic

 Consider the set of number 
{0, … ,7}

 Suppose all arithmetic 
operations were finished by 
taking the result modulus 8

 3 + 6 = 9, 9 mod 8 = 1

 3 + 6 = 1

 3*5 = 15, 15 mod 8 = 7

 3*5 = 7  

1

2

3

4

5

6

7

0

Modulo Arithmetic: Computing in a 
finite world What is the additive inverse of 7 in 

modulo arithmetics?

 7 + x = 0

 7 + 1 = 0

 0 and 4 are their own additive 
inverses 

 Does each number also have a 
multiplicative inverse?
 7 x 7 = 1

 Does each number has a 
multiplicative inverse?

 What if m=11? Now does each 
number have a multiplicative 
inverse?

1

2

3

4

5

6

7

0



Summary

 All information in computer are represented by 
bits.  These bits encode information.  It’s 
meaning has to be interpreted in a specific way. 

 We’ve learnt how to represent unsigned integer, 
negative integer, floating pointer number, as well 
as ASCII characters.

 Computers have to compute in a finite world.


