
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Loops

2

The for loop

 for (initialize loop; continuation condition ;
loop increment)

{ execute loop body; }

 The for loop can be equivalently described in
terms of the following while loop:
 initialize loop;

while (continuation condition is true)

{ execute loop body;

loop increment; }

Example

 One can compute gcds using for loops as
follows:

for (; b > 0 ;)

{

r = a % b; /* Compute the next remainder */

a = b; /* Replace a by b */

b = r; /* Replace b by r */

}

3

Computing the Harmonic Numbers

 Computation of harmonic numbers using for
loops is quite simple:

H = 0;

for (i=1; i<=n; ++i)

H += 1.0/i;

printf("H(%d) = %f\n", n, H);

For loops with multiple initialization and
incrementation statements
 If more than one statements need be

executed during the initialization or increment
step, they should be separated by commas,
since semi-colons indicate separation of the
three parts of the loop control area.

 for (i = 2, p1 = 1, p2 = 0; i <= n; ++i , p2 = p1 , p1 = F)

F = p1 + p2; /* Compute Fi from Fi-1 and Fi-2 */
printf("F(%d) = %d", n, F);

4

Loop Invariants

 For verifying the correctness of loops one
often uses the concept of loop invariance.

 A loop invariant refers to a statement that is
true at all instants when the loop condition is
checked.

 It may be expressed in terms of one or more
variables controlling the flow of the loop.

Example

 Consider the while loop implementation of the
computation of Hn.

 i = 0; H = 0;
while (i < n)

{ ++i; /* Incremet i */
H += 1.0/i; /* Update the harmonic number

accordingly */ }
Here the loop invariant is the statement "H stores the

value Hi for all i=0,1,2,...,n".
The correctness of this statement can be proved using

induction on i.

5

Another example

/* Initialize */
r2 = a; u2 = 1; v2 = 0; /* Previous-to-previous values */
r1 = b; u1 = 0; v1 = 1; /* Previous values */

/* Extended gcd loop */
while (r1 > 0) {

/* Compute values for the current iteration */
q = r2 / r1; /* Compute the next quotient */
r = r2 - q * r1; /* Compute the next remainder */
u = u2 - q * u1; /* Identically compute the next u value */
v = v2 - q * v1; /* Identically compute the next v value */
/* Prepare for the next iteration */

r2 = r1; u2 = u1; v2 = v1; /* Let the previous-to-previous values be the
previous values */

r1 = r; u1 = u; v2 = v; /* Let the previous values be the current values */ }
printf("gcd(a,b) = %d = (%d) * a + (%d) * b\n", r2, u2, v2);

Loop Invariant

 Whenever the continuation condition for the
above loop is checked, we have:
 gcd(r2,r1) = gcd(a,b), (1)

 u2 * a + v2 * b = r2, (2)

 u1 * a + v1 * b = r1. (3)

 Convince your self that the initial values
satisfy these 3 equations.

 Prove the results by induction:
 gcd(r1,r)=gcd(r2,r1)=gcd(a,b)

6

Inductive Reasoning

 Moreover,
 u = u2 - q * u1, and v = v2 - q * v1, and so

 u * a + v * b

= (u2 - q * u1) * a + (v2 - q * v1) * b

= (u2 * a + v2 * b) - q * (u1 * a + v1 * b)

= r2 - q * r1 = r.

Let us look at the trace of the values stored in different variables
for a sample run with a=78 and b=21.

6
3

26
26

-7
-7

0
0

2
2

-11
26

4
-11

3
-7

-1
3

3
0

6
3

4

15
6

-11
-11

3
3

3
3

2
2

4
-11

-3
4

-1
3

1
-1

6
3

15
6

3

21
15

4
4

-1
-1

6
6

1
1

3
4

1
-3

1
-1

0
1

15
6

21
15

2

78
21

-3
-3

1
1

15
15

3
3

1
-3

0
1

0
1

1
0

21
15

78
21

1

78 ----10012178Before loop

u2*a+v2*b vurqv1v2u1u2r1r2Iteration No

gcd(78,21) = 3 = (3) * 78 + (-11) * 21

7

The break statement

 A loop may be forcibly broken from inside
irrespective of whether the continuation
condition is satisfied or not. This is achieved
by the break statement.

 while (1)

{ if (b == 0) break;

r = a % b; a = b; b = r;

} printf("gcd = %d\n", a);

Infinite loops with break

 The do-while loop:
do { execute loop body; } while (continuation
condition is true);
is equivalent to

 do { execute loop body;
if (continuation condition is false) break; }
while (1);

 while (1) { execute loop body;
if (continuation condition is false) break; }

8

Cmputing sum of gcd(a,b), a<=b<=20

/* Initialize sum */
sum = 0;
for (i=1; i<=20; ++i)

{ for (j=i; j<=20; ++j)
{ /* Now we plan to compute gcd(j,i) */
/* But we must not disturb the loop variables */

/* So we copy j and i to temporary variables a and b and change those copies */
a = j; b = i;

/* The Euclidean gcd loop */
while (1)
{ if (b == 0) break; /* gcd computation is over, so break the while loop */
r = a % b; a = b; b = r; }

/* When the while loop is broken, a contains gcd(j,i). Add it to the accumulating
sum. */

sum += a;
}/*end inner for loop*/

}/*end outer for loop*/
printf("The desired sum = %d\n", sum);

An obfuscated code

 sum = 0; /* Initialize sum to 0 */
i = 0; /* Initialize the outer loop variable */

while (1 != 0) { /* This condition is always true */
j = ++i; /* Increment i and assign the incremented value to j */

if (j == 21) break; /* Break the outermost loop */
while (3.1416 > 0) { /* This condition is always true */

a = j; b = i; /* Copy j and i to temporary variables */
while ('A') { /* This condition is again always true, since 'A' = 65 */
r = a % b; /* Compute next remainder */
if (!r) break; /* Break the innermost loop */

a = b; /* Adjust a and b and */
b = r; /* prepare for the next iteration */ }

/* End of innermost loop */

9

sum += b; /* Add gcd(j,i) to the accumulating
sum */
if (j == 20) break;
/* Break the intermediate loop */
++j; /* Prepare for the next value of j */ }
/* End of intermediate loop */ }

/* End of outermost loop */
printf("The desired sum = %d\n", sum);

