
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Assignments

2

Example

#include<stdio.h>
main()
{

float a = -7.89., b = 3;
int c;
typedef unsigned long newlong;
newlong d;
c = (int) a + b;
d=c;

printf("%d\n",c);
printf("%x\n",d);

}

Typecasting Again

 float a = 7.89, b = 3.21;
int c; c = (int)(a + b);

What is the value of c?

The parentheses around the expression a + b implies that the
typecasting is to be done after the evaluation of the expression.
The following variant has a different effect:

 float a = 7.89, b = 3.21; int c; c = (int)a + b;

 What is the value of c now?

3

Assignments also return a value.

 int a, b, c; c = (a = 8) + (b = 13);

 Here a is assigned the value 8 and b the
value 13. The values (8 and 13) returned by
these assignments are then added and the
sum 21 is stored in c.

 The assignment of c also returns a value, i.e.,
21.

 Here we do not need this value.

Assignment is right associative

 For example,

a = b = c = 0;

is equivalent to a = (b = (c = 0));

 Here c is first assigned the value 0. This
value is returned to assign b, i.e., b also gets
the value 0. The value returned from this
second assignment is then assigned to a.
Thus after this statement all of a, b and c are
assigned the value 0.

4

Generation of Expressions

 A constant is an expression.
 A (defined) variable is an expression.
 If E is an expression, then so also is (E).
 If E is an expression and op a unary operator defined in C, then

op E is again an expression.
 If E1 and E2 are expressions and op is a binary operator defined

in C, then E1 op E2 is again an expression.
 If V is a variable and E is an expression, then V = E is also an

expression.

--- These rules do not exhaust all possibilities for generating
expressions, but form a handy set to start with.

Examples

 53 /* constant */
 -3.21 /* constant */
 'a' /* constant */
 x /* variable */
 -x[0] /* unary negation on a variable */
 x + 5 /* addition of two subexpressions */
 (x + 5) /* parenthesized expression */
 (x) + (((5))) /* another parenthesized expression */
 y[78] / (x + 5) /* more complex expression */
 y[78] / x + 5 /* another complex expression */
 y / (x = 5) /* expression involving assignment */
 1 + 32.5 / 'a' /* expression involving different data types */

5

Non-examples

 5 3 /* space is not an operator and integer
constants may not contain spaces */

 y *+ 5 /* *+ is not a defined operator */

 x (+ 5) /* badly placed parentheses */

 x = 5; /* semi-colons are not allowed in
expressions */

Operators in C

Applicable for integers and real numbers.
(binary)
multiplic

ation
*

Applicable for integers and real numbers.
(binary)
subtract

ion
-

Applicable for integers and real numbers.
(binary)
addition

+

Applicable for integers and real numbers. Does not make
enough sense for unsigned operands.

unary
negatio

n
-

Description
Meanin
g

Oper
ator

6

Operators in C

Applicable only for integer operands.
(binary)
remaind

er
%

For integers division means "quotient", whereas for real
numbers division means "real division". If both the operands
are integers, the integer quotient is calculated, whereas if
(one or both) the operands are real numbers, real division is
carried out.

(binary)
division

/

Examples

 Here are examples of integer arithmetic:
 55 + 21 evaluates to 76.
 55 - 21 evaluates to 34.
 55 * 21 evaluates to 1155.
 55 / 21 evaluates to 2.
 55 % 21 evaluates to 13.
Here are some examples of floating point arithmetic:
 55.0 + 21.0 evaluates to 76.0.
 55.0 - 21.0 evaluates to 34.0.
 55.0 * 21.0 evaluates to 1155.0.
 55.0 / 21.0 evaluates to 2.6190476 (approximately).
 55.0 % 21.0 is not defined.
Note: C does not provide a built-in exponentiation operator.

7

Bitwise Operators

 Bitwise operations apply to unsigned integer
operands and work on each individual bit.

 Bitwise operations on signed integers give results
that depend on the compiler used, and so are not
recommended in good programs.

 The following table summarizes the bitwise
operations.

 For illustration we use two unsigned char operands
a and b. We assume that a stores the value
237 = (11101101)2 and that b stores the value
174 = (10101110)2.

Left-shift <<

Right-shift >>

Complement ~

EXOR ^

OR |

AND &

Example MeaningOperator

0 0110101a & b is 172

0 1110101b = 174

1 0110111a = 237

1 1110111a | b is 239

0 1110101b = 174

1 0110111a = 237

1 1000010a ^ b is 67

0 1110101b = 174

1 0110111a = 237

0 1001000~a is 18

1 0110111a = 237

0 1101110a >> 2 is 59

1 0110111a = 237

0 0111010b << 1 is 92

0 1110101b = 174

8

Multiply by 2 (or powers of 2)

#include<stdio.h>
main()
{
int a;
int n;
scanf("%d",&a);
scanf("%d",&n);
printf("Result: %d\n",a<<n);

}

Divide by 2 (or powers of 2)

#include<stdio.h>
main()
{
int a;
int n;
scanf("%d",&a);
scanf("%d",&n);
printf("Result: %d\n",a>>n);

}

9

If the number is negative

 Suppose a=--5, n=1
+5: 0000 0000 0000 0101

1111 1111 1111 1010
1

1111 1111 1111 1011 >> 1: 1111 1111 1111 1101

What does this represent?
0000 0000 0000 0010

1

0000 0000 0000 0011 : +3

Therefore, the result is -3 (So, is it integer division ?)

Bit Complement Operator

 Consider an integer i. How do you make the last 4
bits 0?

 Method 1: i = i & 0xfff0;

(requires the knowledge of the size of int)

 Method 2: i = (i >> 4)<<4; (requires two shifts)

 Method 3: i = i & ~0xf;

 Concise Form: i &= ~0xf; (expressions like this
when the variable being assigned to and the
variable being operated on are same can be
written like this).

10

Extract the nth bit

#include<stdio.h>
main()
{

int i, n;
int bit;
scanf("%d",&i);
scanf("%d",&n);
bit = (i>>n)&1;
printf("The %dth bit of %d is %d\n",n,i,bit);

}

Problem

 Can you use this code (method) to find out
the binary representation of an integer value?
 Write a C code and check.

11

Ternary Operator

 Consists of two symbols: ? and :
 example,

larger = (i > j) : i : j;

 i and j are two test expressions.

 Depending on whether i > j, larger (the variable on
the left) is assigned.
 if (i > j), larger = i

 else (i,e i<=j), larger = j

 This is the only operator in C which takes three
operands.

Comma Operator

 int i, j;

 i=(j=1,j+10);

 What is the result? j=11.

