
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Assignments

2

Assignments

 Initialization during declaration helps one store
constant values in memory allocated to variables.
Later one typically does a sequence of the following:
 Read the values stored in variables.

 Do some operations on these values.

 Store the result back in some variable.

 This three-stage process is effected by an
assignment operation. A generic assignment
operation looks like: variable = expression;

Assignments are Imperative

 Here expression consists of variables and constants
combined using arithmetic and logical operators.

 The equality sign (=) is the assignment operator.
 To the left of this operator resides the name of a

variable.
 All the variables present in expression are loaded to the

CPU. The ALU then evaluates the expression on these
values.

 The final result is stored in the location allocated to
variable.

 The semicolon at the end is mandatory and denotes that
the particular statement is over. It is a statement
delimiter

3

Imperative Programming

 A C program typically consists of a sequence
of statements. They are executed one-by-one
from top to bottom (unless some explicit jump
instruction or function call is encountered).
This sequential execution of statements gives
C a distinctive imperative flavor.

 This means that the sequence in which
statements are executed decides the final
values stored in variables.

Example

int x = 43, y = 15; /* Two integer variables
are declared and initialized */

x = y + 5; /* The value 15 of y is fetched and
added to 5. The sum 20 is stored in the memory
location for x. */

y = x; /* The value stored in x, i.e., 20 is fetched
and stored back in y. */

After these statements are executed both the
memory locations for x and y store the integer
value 20.

4

Another example

 Let us now switch the two assignment operations.
 int x = 43, y = 15; /* Two integer variables are

declared and initialized */
y = x; /* The value stored in x, i.e., 43 is fetched and
stored back in y. */
x = y + 5; /* The value 43 of y is fetched and added
to 5. The sum 48 is stored in the memory location
for x. */

For this sequence, x stores the value 48 and y the
value 43, after the two assignment statements are
executed.

Assignments with same variables

 The right side of an assignment operation may
contain multiple occurrences of the same variable.

 For each such occurrence the same value stored in
the variable is substituted.

 Moreover, the variable in the left side of the
assignment operator may appear in the right side
too.

 In that case, each occurrence in the right side refers
to the older (pre-assignment) value of the variable.

 After the expression is evaluated, the value of the
variable is updated by the result of the evaluation.

5

Example

 int x = 5; x = x + (x * x);
 The value 5 stored in x is substituted for each

occurrence of x in the right side, i.e., the expression
5 + (5 * 5) is evaluated.

 The result is 30 and is stored back to x.
 Thus, this assignment operation causes the value of

x to change from 5 to 30.
 The equality sign in the assignment statement is not

a mathematical equality, i.e., the above statement
does not refer to the equation x = x + x2 (which
happens to have a single root, namely x = 0).

Floating point numbers, characters and
array locations may also be used in
assignment operations.
 float a = 2.3456, b = 6.5432, c[5]; /* Declare float variables and

arrays */
char d, e[4]; /* Declare character variables and arrays */
c[0] = a + b; /* c[0] is assigned 2.3456 + 6.5432, i.e., 8.8888 */

c[1] = a - c[0]; /* c[1] is assigned 2.3456 - 8.8888, i.e., -6.5432 */
c[2] = b - c[0]; /* c[2] is assigned 6.5432 - 8.8888, i.e., -2.3456 */
a = c[1] + c[2]; /* a is assigned (-6.5432) + (-2.3456), i.e., -8.8888 */
d = 'A' - 1; /* d is assigned the character ('@') one less than 'A' in the
ASCII chart */
e[0] = d + 1; /* e[0] is assigned the character next to '@', i.e., 'A' */
e[1] = e[0] + 1; /* e[1] is assigned the character next to 'A', i.e., 'B' */
e[2] = e[0] + 2; /* e[2] is assigned the character second next to 'A',
i.e., 'C' */
e[3] = e[2] + 1; /* e[3] is assigned the character next to 'C', i.e., 'D' */

6

Implicit Conversion

 An assignment does an implicit type conversion, if
its left side turns out to be of a different data type
than the type of the expression evaluated.

 float a = 7.89, b = 3.21; int c; c = a + b;

 Here the right side involves the floating point
operation 7.89 + 3.21. The result is the floating point
value 11.1. The assignment plans to store this result
in an integer variable.

 The value 11.1 is first truncated and subsequently
the integer value 11 is stored in c.

Example

#include<stdio.h>
main()
{

float a = -7.89., b = 3;
int c;
typedef unsigned long newlong;
newlong d;
c = (int) a + b;
d=c;

printf("%d\n",c);
printf("%x\n",d);

}

7

Typecasting Again

 float a = 7.89, b = 3.21;
int c; c = (int)(a + b);

The parentheses around the expression a + b
implies that the typecasting is to be done after the
evaluation of the expression. The following variant
has a different effect:

 float a = 7.89, b = 3.21; int c; c = (int)a + b;

 What is the value of c now?

Assignments also return a value.

 int a, b, c; c = (a = 8) + (b = 13);

 Here a is assigned the value 8 and b the
value 13. The values (8 and 13) returned by
these assignments are then added and the
sum 21 is stored in c.

 The assignment of c also returns a value, i.e.,
21. Here we have ignored this value.

8

Assignment is right associative

 For example,

a = b = c = 0;

is equivalent to a = (b = (c = 0));

 Here c is first assigned the value 0. This
value is returned to assign b, i.e., b also gets
the value 0. The value returned from this
second assignment is then assigned to a.
Thus after this statement all of a, b and c are
assigned the value 0.

Generation of Expressions

 A constant is an expression.
 A (defined) variable is an expression.
 If E is an expression, then so also is (E).
 If E is an expression and op a unary operator defined in C, then

op E is again an expression.
 If E1 and E2 are expressions and op is a binary operator defined

in C, then E1 op E2 is again an expression.
 If V is a variable and E is an expression, then V = E is also an

expression.

--- These rules do not exhaust all possibilities for generating
expressions, but form a handy set to start with.

9

Examples

 53 /* constant */
 -3.21 /* constant */
 'a' /* constant */
 x /* variable */
 -x[0] /* unary negation on a variable */
 x + 5 /* addition of two subexpressions */
 (x + 5) /* parenthesized expression */
 (x) + (((5))) /* another parenthesized expression */
 y[78] / (x + 5) /* more complex expression */
 y[78] / x + 5 /* another complex expression */
 y / (x = 5) /* expression involving assignment */
 1 + 32.5 / 'a' /* expression involving different data types */

Non-examples

 5 3 /* space is not an operator and integer
constants may not contain spaces */

 y *+ 5 /* *+ is not a defined operator */

 x (+ 5) /* badly placed parentheses */

 x = 5; /* semi-colons are not allowed in
expressions */

10

Operators in C

Applicable for integers and real numbers.
(binary)
multiplic

ation
*

Applicable for integers and real numbers.
(binary)
subtract

ion
-

Applicable for integers and real numbers.
(binary)
addition

+

Applicable for integers and real numbers. Does not make
enough sense for unsigned operands.

unary
negatio

n
-

Description
Meanin
g

Oper
ator

Operators in C

Applicable only for integer operands.
(binary)
remaind

er
%

For integers division means "quotient", whereas for real
numbers division means "real division". If both the operands
are integers, the integer quotient is calculated, whereas if
(one or both) the operands are real numbers, real division is
carried out.

(binary)
division

/

11

Examples

 Here are examples of integer arithmetic:
 55 + 21 evaluates to 76.
 55 - 21 evaluates to 34.
 55 * 21 evaluates to 1155.
 55 / 21 evaluates to 2.
 55 % 21 evaluates to 13.
Here are some examples of floating point arithmetic:
 55.0 + 21.0 evaluates to 76.0.
 55.0 - 21.0 evaluates to 34.0.
 55.0 * 21.0 evaluates to 1155.0.
 55.0 / 21.0 evaluates to 2.6190476 (approximately).
 55.0 % 21.0 is not defined.
Note: C does not provide a built-in exponentiation operator.

Bitwise Operators

 Bitwise operations apply to unsigned integer
operands and work on each individual bit.

 Bitwise operations on signed integers give results
that depend on the compiler used, and so are not
recommended in good programs.

 The following table summarizes the bitwise
operations.

 For illustration we use two unsigned char operands
a and b. We assume that a stores the value
237 = (11101101)2 and that b stores the value
174 = (10101110)2.

12

Left-shift <<

Right-shift >>

Complement ~

EXOR ^

OR |

AND &

Example MeaningOperator

0 0110101a & b is 172

0 1110101b = 174

1 0110111a = 237

1 1110111a | b is 239

0 1110101b = 174

1 0110111a = 237

1 1000010a ^ b is 67

0 1110101b = 174

1 0110111a = 237

0 1001000~a is 18

1 0110111a = 237

1 1011100a >> 2 is 59

1 0110111a = 237

0 0111010b << 1 is 92

0 1110101b = 174

