
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Continuing with Data types…

2

Input Output for short and long int

#include<stdio.h>
void main()
{
short int shorti;
long int longi;
printf(“Input short int: “);
scanf(“%hd”,&shorti);
printf(“%hd\n”,shorti);
printf(“Inputt long int: “);
scanf(“%ld”,&longi);
printf(“%ld\n”,longi);
printf(“shorti = %hd and longi=%ld”,shorti,longi);
}
A Sample Run:

Input short int: 20
Input long int: 2000000
shorti= 20 and longi= 2000000

limits.h

 The header file limits.h contains the largest
and smallest values that each of the various
data types can hold.

 Typical path: /usr/lib

 The header file float.h contains the range of
the double data type.

 Have a look at these files!

3

The typedef statement

 This statement can be used to define new
data types.
 For example:

typedef unsigned long ulong;
 ulong is a new data type equivalent to unsigned long

 It can be used as any other data type as follows;
ulong u;

(declares u to be of the type ulong)

 The size of the new data type can also be found
in bytes using sizeof(ulong)

Pointer Data Type

 Pointers are addresses in memory.
 In order that the user can directly manipulate memory addresses,

C provides an abstraction of addresses.
 The memory location where a data item resides can be accessed

by a pointer to that particular data type. C uses the special
character * to declare pointer data types.

 A pointer to a double data is of data type double *.
 A pointer to an unsigned long int data is of type

unsigned long int *.
 A character pointer has the data type char *.

 We will study pointers more elaborately later in this course.

4

Examples

 int m, n, armadillo;

 int platypus;

 float hi, goodMorning;

 unsigned char _u_the_charcoal;

Constants

 Defining a data type is not enough.

 You need to assign the variables and work
with specific values of various data types.

 Examples: PI (hopefully it will not change its
value!)

 1.0/n is our previous example of finding
reciprocals has a constant.

5

Integer Constants

 An integer constant is a non-empty sequence of decimal numbers preceded
optionally by a sign (+ or -).

 However, the common practice of using commas to separate groups of three (or
five) digits is not allowed in C.

 Nor are spaces or any character other than numerals allowed.
 Here are some valid integer constants:

332
-3002
+15
-00001020304

 And here are some examples that C compilers do not accept:
3 332
2,334
- 456
2-34
12ab56cd

Hexadecimal values

 You can also express an integer in base 16, i.e., an
integer in the hexadecimal (abbreviated hex)
notation.

 In that case you must write either 0x or 0X before
the integer. Hexadecimal representation requires 16
digits 0,1,...,15. In order to resolve ambiguities the
digits 10,11,12,13,14,15 are respectively denoted by
a,b,c,d,e,f (or by A,B,C,D,E,F). Here are some valid
hexadecimal integer constants:

0x12ab56cd -0X123456 0xABCD1234 +0XaBCd12

6

Constants of different Integer types

 Since different integer data types use
different amounts of memory and represent
different ranges of integers, it is often
convenient to declare the intended data type
explicitly.

Constants of different Integer types

unsigned long longULL (or ull)
unsigned longUL (or ul)

unsignedU (or u)

long longLL (or ll)
longL (or l)

Data type Suffix

7

Examples

 4000000000UL

 123U

 0x7FFFFFFFl

 0x123456789abcdef0ULL

Real Constants

 Real constants can be specified by the usual
notation comprising an optional sign, a decimal point
and a sequence of digits. Like integers no other
characters are allowed.

 Real numbers are sometimes written in the scientific
notation (like 3.45x1067). The following expressions
are valid for writing a real number in this fashion:
3.45e67 +3.45e67 -3.45e-67 .00345e-32 1e-15.

 You can also use E in place of e in this notation

8

Character Constants

 Character constants are single printable
symbols enclosed within single quotes.

 Here are some examples: 'A' '7' '@' ' '

Special Characters

92 Backslash'\\'
39 Quote'\''
13 New line'\n'
9 Tab'\t'
8 Backspace'\b'
0 Null'\0'

ASCII value CharacterConstant

9

Try this!

#include<stdio.h>

main()

{

int i;

for(i=0;i<10000;i++)

prinf(“%c”,’\a’)

}

Formats

 %c The character format specifier.
%d The integer format specifier.
%i The integer format specifier (same as %d).
%f The floating-point format specifier.
%e The scientific notation format specifier.
%E The scientific notation format specifier.
%g Uses %f or %e, whichever result is shorter.
%G Uses %f or %E, whichever result is shorter.
%o The unsigned octal format specifier.
%s The string format specifier.
%u The unsigned integer format specifier.
%x The unsigned hexadecimal format specifier.
%X The unsigned hexadecimal format specifier.
%p Displays the corresponding argument that is a pointer.
%n Records the number of characters written so far.
%% Outputs a percent sign.

10

Characters can be represented by numbers

 Since characters are identified with integers
in the range -127 to 128 (or in the range 0 to
255), you can use integer constants in the
prescribed range to denote characters.

 The particular sequence '\xuv' (synonymous
with 0xuv) lets you write a character in the
hex notation.

 For example, '\x2b' is the integer 43 in
decimal notation and stands for the character
'+'.

Pointer constants

 It is dangerous to work with constant addresses.
 You may anyway use an integer as a constant address.
 But doing that lets the compiler issue you a warning

message.
 Finally, when you run the program and try to access

memory at a constant address, you are highly likely to
encounter a frustrating mishap known as "Segmentation
fault".

 It occurs when the memory is accessed at an illegal address
(beyond what you are supposed to).

 However there is a pointer constant that is used widely. This
is called NULL. A NULL pointer points to nowhere.

11

Variables

 “The only constant thing is change”
 Variables help to abstract this change.
 Teacher = XYZ ;

 here Teacher is a variable
 XYZ is one instance of the variable, and is a constant

 A variable is an entity that has a value and is known
to the program by a name,

 A variable definition associates a memory location
with the variable name.

 At one time it can have only one value associated
with it.

Declaring variables

 For declaring one or more variables of a
given data type do the following:

 First write the data type of the variable.

 Then put a space (or any other white
character).

 Then write your comma-separated list of
variable names.

 At the end put a semi-colon.

12

Promotion and typecasting of variables

int i;

float f;

i = 5;

f = i;

The last statement assigns i to f. Since i is an integer
and f is float, the conversion is automatic.

Promotion: This type of conversion, when the variable
of lower type is converted to a higher type is called
promotion.

Integral Promotion

int i;

char c;

c = ‘a’;

i = c;

The value present in the character variable ‘c’, i.e the
ASCII code of the character ‘a’ is assigned to the
integer ‘i’.

But i is typically represented using 2 bytes and c with 1
byte. Here comes the concept of sign extension.

13

Sign extension

 Conversion to a signed integer from character data
type:
 lower 8 bits will be the character’s value.

 higher 8 bits will be filled with 0 or 1, depending on the
Maximum Significant Bit (MSB) of the character.

(Note: MSB is used to indicate the sign of a signed number)

 This is called sign extension.

 Sign extension takes place only if the variable of
the higher type is signed.

Truncation

f=7.5

i = f

 This results in the discarding of .5. The value
7 is assigned to i.



14

Forcible Conversion

int i, j;

float f;

i=12; j=5;

f = i/j;

printf(“%f\n”,f);

The output is 2.0. This is because both i and
j are integers, an integer division will take
place.

Typecasting

 In order to have a floating division, either i or j should be
float.

 We can change say i, from integer to float by
typecasting, using:

(float) i
 Thus we have to change the division line to:

f = (float) i/j;
 The general syntax is:

(type) variable_name;
 Typecasting can also be used to convert a higher

data type to a lower type, for example:
(int) f

