
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

The queue ADT

 A queue is like a "natural" queue of elements.
 It is an ordered list in which all insertions occur at

one end called the back or rear of the queue.
 All deletions occur at the other end called the front

or head of the queue.
 In the popular terminology, insertion and deletion in

a queue are respectively called the enqueue and
the dequeue operations.

 The element dequeued from a queue is always the
first to have been enqueued among the elements
currently present in the queue.
 In view of this, a queue is often called a First-In-First-Out

or a FIFO list.

Initializing the queue

 queue init ()

{

queue Q;

Q.front = 0;

Q.back = MAXLEN - 1;

return Q;

}

Operations on the queue ADT

 Q = init();
 Initialize the queue Q to the empty queue.

 isEmpty(Q);
 Returns "true" if and only if the queue Q is empty.

 isFull(Q);
 Returns "true" if and only if the queue Q is full, provided

that we impose a limit on the maximum size of the queue.

 front(Q);
 Returns the element at the front of the queue Q or error if

the queue is empty.

Operations on the queue ADT

 Q = enqueue(Q,ch);
 Inserts the element ch at the back of the queue Q. Insertion

request in a full queue should lead to failure together with
some appropriate error messages.

 Q = dequeue(Q);
 Delete one element from the front of the queue Q. A

dequeue attempt from an empty queue should lead to
failure and appropriate error messages.

 print(Q);
 Print the elements of the queue Q from front to back.

Implementations of the queue ADT

 We maintain two indices to represent the front and
the back of the queue.

 During an enqueue operation, the back index is
incremented and the new element is written in this
location.

 For a dequeue operation, on the other hand, the
front is simply advanced by one position.

 It then follows that the entire queue now moves
down the array and the back index may hit the right
end of the array, even when the size of the queue is
smaller than the capacity of the array.

Reducing wastage in the queue

 In order to avoid waste of space, we allow our queue to
wrap at the end.

 This means that after the back pointer reaches the end
of the array and needs to proceed further down the line,
it comes back to the zeroth index, provided that there is
space at the beginning of the array to accommodate new
elements.

 Thus, the array is now treated as a circular one with
index MAXLEN treated as 0, MAXLEN + 1 as 1, and so
on.

 That is, index calculation is done modulo MAXLEN.
 We still don't have to maintain the total queue size.
 As soon as the back index attempts to collide with the

front index modulo MAXLEN, the array is considered to
be full.

Tackling Isempty and Isfull

 There is just one more problem to solve.
 A little thought reveals that under this wrap-around

technology, there is no difference between a full
queue and an empty queue with respect to
arithmetic modulo MAXLEN.

 This problem can be tackled if we allow the queue to
grow to a maximum size of MAXLEN - 1.
 This means we are going to lose one available space, but

that loss is inconsequential.
 Now the condition for full array is that the front index is two

locations ahead of the back modulo MAXLEN, whereas the
empty array is characterized by that the front index is just
one position ahead of the back again modulo MAXLEN.

Isempty and Isfull

int isEmpty (queue Q)
{
return (Q.front == (Q.back + 1) % MAXLEN);
}

int isFull (queue Q)
{
return (Q.front == (Q.back + 2) % MAXLEN);
}

Enqueue

queue enqueue (queue Q , char ch)
{
if (isFull(Q))

{
fprintf(stderr,"enqueue: Queue is full\n");
return Q;

}
++Q.back;
if (Q.back == MAXLEN)

Q.back = 0;
Q.element[Q.back] = ch;

return Q;
}

Dequeue

queue dequeue (queue Q)
{
if (isEmpty(Q))

{
fprintf(stderr,"dequeue: Queue is empty\n"); return Q;

}
++Q.front;

if (Q.front == MAXLEN)
Q.front = 0;
return Q;
}

The main program

int main ()
{

queue Q;

Q = init(); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'h'); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'w'); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'r'); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'c'); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");

}

Output

Current queue :
Current queue : h
Current queue : hw
Current queue : hwr
Current queue : wr
Current queue : r
Current queue : rc
Current queue : c
Current queue :
dequeue: Queue is empty
Current queue :

Defining a node in the queue

#include <stdio.h>
#include <malloc.h>

typedef struct _node {
char element;
struct _node *next;

} node;

typedef struct {
node *front;
node *back;

} queue;

Initialization of the queue

queue init ()
{

queue Q;

/* Create the dummy node */
Q.front = (node *)malloc(sizeof(node));
Q.front -> element = ' ';
Q.front -> next = NULL;
Q.back = Q.front;
return Q;

}

isEmpty, isFull, front

int isEmpty (queue Q)
{

return (Q.front ==
Q.back);

}

int isFull (queue Q)
{

return 0;
}

char front (queue Q)
{

if (isEmpty(Q)) {
fprintf(stderr,"front:

Queue is empty\n");
return '\0';

}
return Q.front -> element;

}

Enqueue

queue enqueue (queue Q ,
char ch)

{
node *C;
if (isFull(Q)) {

fprintf(stderr,"enqueue:
Queue is full\n");

return Q;
}

/* Create new node */
C = (node *)malloc(sizeof(node));
C -> element = ch;
C -> next = NULL;

/* Adjust the back of queue */
Q.back -> next = C;
Q.back = C;

return Q;
}

Dequeue

queue dequeue (queue Q)
{

if (isEmpty(Q)) {
fprintf(stderr,"dequeue: Queue is empty\n");
return Q;

}

/* Make the front of the queue the new dummy node */
Q.front = Q.front -> next;
Q.front -> element = '\0';

return Q;
}

Printing the queue

void print (queue Q)
{

node *G;

G = Q.front -> next;
while (G != NULL) {

printf("%c", G -> element);
G = G -> next;

}
}

The main program

int main ()
{

queue Q;

Q = init(); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'h'); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'w'); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'r'); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = enqueue(Q,'c'); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");
Q = dequeue(Q); printf("Current queue : "); print(Q); printf("\n");

}

Output

 Current queue :
 Current queue : h
 Current queue : hw
 Current queue : hwr
 Current queue : wr
 Current queue : r
 Current queue : rc
 Current queue : c
 Current queue :
 dequeue: Queue is empty
 Current queue :

Two Examples

Testing whether a line is straight
(incomplete program)
#include <stdio.h>
typedef struct {
int x;
int y;

}points;
typedef points line [3];
main()
{
line l1;
int i;
float m1, m2;
for(i=0;i<3;i++){

printf("Enter Point %d\n",i+1);
scanf("%d",&l1[i].x);
scanf("%d",&l1[i].y);

}

if((!l1[0].x-l1[0].x)&&(!l1[2].x-
l1[1].x))
{
m1=(float)(l1[1].y-

l1[0].y)/(l1[1].x-l1[0].x);
m2=(float)(l1[2].y-

l1[1].y)/(l1[2].x-l1[1].x);
}

if(m1==m2)
printf(“Line is straight…\n");

}

Reversing a linked list

void reverse(olist L)
{
node *temp;
node *temp1;
node *temp2;
temp=L;temp1=temp->next;temp2=temp1->next;
temp->next->next=NULL;

while(temp2!=NULL)
{
temp=temp1;
temp1=temp2;
temp2=temp1->next;
temp1->next=temp;

}
L->next=temp1;
}

Recursion using stacks for n>=2

void rec(int n, stack S)
{
int tp, res=1;
int cnt=n;
printf("Current stack : "); print(S); printf(" with top = %d.\n", top(S));

while(!isEmpty(S)){
tp=top(S);
if(tp==2)
{
res=1;
while(cnt>1)
{res*=top(S); S=pop(S);cnt--;}

}
else{
S=push(S,n-1);
n=n-1;

}
}
printf("Factorial = %d\n",res);

}

int main ()
{

stack S;
int n;
S = init();
S = push(S,n);
printf("Current stack : ");

print(S); printf(" with top =
%d.\n", top(S));

rec(n,S);
}

