
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Dynamic Memory Allocation

 All variables, arrays, structures and unions that we worked with
so far are statically allocated, meaning that whenever an
appropriate scope is entered (e.g. a function is invoked) an
amount of memory dependent on the data types and sizes is
allocated from the stack area of the memory.

 When the program goes out of the scope (e.g. when a function
returns), this memory is returned back to the stack.

 There is an alternative way of allocating memory, more precisely,
from the heap part of the memory.

 In this case, the user makes specific calls to capture some
amount of memory and continues to hold that memory unless it is
explicitly (i.e., by distinguished calls) returned back to the heap.

 Such memory is said to be dynamically allocated.

Linked Lists with Arrays

 A static array can implement such lists, but has two
disadvantages:
 The size of a static array is fixed during declaration, i.e., a

static array can handle lists of a bounded size.

 The linked structure can be incorporated in the
framework of an array, but that requires (often awful)
calculations to find the locations of the next objects.

 If pointers with dynamically assigned memory are
used, accessing objects following the links becomes
much easier.

Using malloc for dynamic memory

 #define SIZE1 25
#define SIZE2 36
int *p;
long double *q;
p = (int *)malloc(SIZE1 * sizeof(int));
q = (long double *)malloc(SIZE2 * sizeof(long double));

The first call of malloc allocates to p a (dynamic) array capable of
storing SIZE1 integers.

The second call allocates an array of SIZE2 long double data to the
pointer q. In addition to the size of each array, we need to specify
the sizeof (size in bytes of) the underlying data type.

 malloc allocates memory in bytes and reads the amount of bytes
needed from its sole argument.

 If you demand more memory than is currently available in your
system, malloc returns the NULL pointer.
 So checking the allocated pointer for NULLity is the way how one

can check if the allocation request has been successfully
processed by the memory management system.

 malloc allocates raw memory from some place in the heap. No
attempts are made to initialize that memory.
 It is the programmer's duty to initialize and then use the values

stored at the locations of a dynamic array.

Example

foollection initfc (int type)
{ foollection fc; /* Set type of the collection */

fc.type = type; /* Allocate memory for the data
pointer */
if (type == 1)

fc.data = (int *)malloc(10*sizeof(int));
else if (type == 2)

fc.data = (int *)malloc(10000000*sizeof(int));
else fc.data = NULL; /* Check for error conditions */
if (fc.data == NULL)

fprintf(stderr, "Error: insufficient memory or
unknown type.\n"); return fc; }

Another Example

typedef struct _node {
int data;
struct _node *next;

} node;
node *head, *p;
int i;
head = (node *)malloc(sizeof(node)); /* Create the first node */
head->data = 3; /* Set data for the first node */
p = head; /* Next p will navigate down the list */
for (i=1; i<=3; ++i)
{ p->next = (node *)malloc(sizeof(node)); /* Allocate the next node */

p = p->next; /* Advance p by one node */
p->data = 2*i+3; /* Set data */
}
p->next = NULL; /* Terminate the list by NULL */

Finer Points

 An important thing to notice here is that we
are always allocating memory to p->next and
not to p itself. For example, first consider the
allocation of head and subsequently an
allocation of p assigned to head->next.

 head = (node *)malloc(sizeof(node));
p = head->next;
p = (node *)malloc(sizeof(node));

Finer Points

 After the first assignment of p, both this pointer and the next pointer of
*head point to the same location.

 However, they continue to remain different pointers. Therefore, the
subsequent memory allocation of p changes p, whereas head->next
remains unaffected.

 For maintaining the list structure we, on the other hand, want
head->next to be allocated memory.

 So allocating the running pointer p is an error. One should allocate
p->next with p assigned to head (not to head->next).

 Now p and head point to the same node and, therefore, both p->next
and head->next refer to the same pointer -- the one to which we like to
allocate memory in the subsequent step.

 This example illustrates that the first node is to be treated separately
from subsequent nodes.
 This is the reason why we often maintain a dummy node at the head and

start the actual data list from the next node.

Realloc

 The realloc call reallocates memory to a pointer. It is essentially used to
change the amount of memory allocated to some pointer.

 If the new size s' of the memory is larger than the older size s, then s
bytes are copied from the old memory to the new memory. The
remaining s'-s bytes are left uninitialized.

 On the contrary, if s'<s, then only s' bytes are copied. If the reallocation
request fails, the original pointer remains unchanged and the NULL
pointer is returned.

 As an example, suppose that we want to change the size of the
dynamic array pointed to by foochain from one million to two millions,
but without altering the data currently stored in the array. We can use
the following call:

 #define NEW_SIZE 2000000
foochain = realloc(foochain, NEW_SIZE * sizeof(foollection));
if (foochain == NULL)

fprintf(stderr, "Error: unable to reallocate storage.\n");

 Memory allocated by malloc, calloc or realloc can be returned to
the heap by the free system call. It takes an allocated pointer as
argument. For example, the foochain pointer can be deallocated
memory by the call:
 free(foochain);

 When a program terminates, all allocated memory (static and
dynamic) is returned to the system.

 There is no necessity to free memory explicitly.
 However, since memory is a bounded resource, allocating it

several times, say, inside a loop, may eventually let the system
run out of memory.

 So it is a good programming practice to free memory that will no
longer be used in the program.

Freeing of pointers

 The freeing mechanism is different for the four
arrays.
 int i; /* A is a static array and cannot be free'd */

 /* B is a single pointer */ free(B);

 /* C is a static array of pointers each to be free'd
individually */
for (i=0; i<ROWSIZE; ++i) free(C[i]);

 /* Free each row */ /* D is a pointer to pointers. Each of
these pointers is to be free'd */

for (i=0; i<ROWSIZE; ++i) free(D[i]);

/* Free each row */ free(D); /* Free the row top */

Abstract Data Type (ADT)

What is ADT?

 An abstract data type (ADT) is an object with
a generic description independent of
implementation details.

 This description includes a specification of
the components from which the object is
made and also the behavioral details of the
object.

How to implement an abstract data
type?
 Specifying only the components of an object does

not suffice.
 Depending on the problem you are going to solve,

you should also identify the properties and
behaviors of the object and perhaps additionally the
pattern of interaction of the object with other objects
of same and/or different types.

 Thus in order to define an ADT we need to specify:
 The components of an object of the ADT.
 A set of procedures that provide the behavioral description

of objects belonging to the ADT.

Example: Integer ADT

 typedef struct {
unsigned long words[313];
unsigned int wordSize;

unsigned char sign; }
bigint;
 when such a data type is passed then the entire array

needs to be copied. Inefficient!

 #define SIZEIDX 313
#define SIGNIDX 314
typedef unsigned long goodbigint[315];

Using the integer data type

#include<stdio.h>
#include<time.h>

main()
{
typedef unsigned long int goodint[315];
int i;
goodint a;
srand((unsigned int)time(NULL));

for(i=0;i<315;i++)
a[i]=1+rand()%99;

for(i=0;i<315;i++)
printf("%d ",a[i]);

printf("\n");
}

Integers bigger than big!

 These big integers are big enough, but cannot represent integers bigger
than big, for example, integers of bit-size millions to billions.

 Whenever we use static arrays, we have to put an upper limit on the
size.

 If we have to deal with integers of arbitrary sizes (as long as memory
permits), we have no option other than using dynamic memory and
allocate the exact amount of memory needed to store a very big
integer.

 But then since the maximum index of the dynamic array is not fixed, we
have to store the size and sign information at the beginning of the array.

 Thus the magnitude of the very big integer is stored starting from the
second array index. This leads to somewhat clumsy translation
between word indices and array indices.

 #define SIZEIDX 0
#define SIGNIDX 1
typedef unsigned long *verybigint;

A better representation

 A better strategy is to use a structure with a dynamic
words pointer.

 typedef struct
{ unsigned long *words;
unsigned int size;
unsigned char sign;

} goodverybigint;
 So you have to pay lot of attention, when

implementation issues come.
 Good solutions come from experience and

innovativeness.

The Complex ADT

#include<stdio.h>

typedef struct{
double real;
double imag;

}complex;

void cprn(complex z)
{

printf("(%lf) + i(%lf)\n", z.real,
z.imag);

}

complex cadd(complex z1, complex z2)

{

complex z;

z.real=z1.real+z2.real;

z.imag=z1.imag+z2.imag;

return(z);

}

complex read()

{

complex z;

scanf("%lf",&z.real);

scanf("%lf",&z.imag);

return(z);

}

The main function

main()
{
complex a, b;
a=read();
b=read();
cprn(a);
cprn(b);
a=cadd(a,b);
cprn(a);

}

The List ADT

 Let us now define a new ADT which has not
been encountered earlier in your math
courses.

 We call this ADT the ordered list.
 It is a list of elements, say characters, in which

elements are ordered, i.e., there is a zeroth
element, a first element, a second element, and
so on, and in which repetitions of elements are
allowed.

Functions on the List ADT
 L = init();

 Initialize L to an empty list.

 L = insert(L,ch,pos);
 Insert the character ch at position pos in the list L and return the modified list.

Report error if pos is not a valid position in L.

 delete(L,pos);
 Delete the character at position pos in the list L. Report error if pos is not a valid

position in L.

 isPresent(L,ch);
 Check if the character ch is present in the list L. If no match is found, return -1,

else return the index of the leftmost match.

 getElement(L,pos);
 Return the character at position pos in the list L. Report error if pos is not a valid

position in L.

 print(L);
 Print the list elements from start to end.

Some functions on the List ADT

#include<stdio.h>
#define MAXLEN 100

typedef struct {
int len;
char element[MAXLEN];

} olist;

olist init()
{

olist L;
L.len = 0;
return L;

}

void print(olist L)
{

int i;

for(i = 0; i < L.len; ++i) printf("%c", L.element[i]);
}

olist insert(olist L , char ch , int pos)

{

int i;

if ((pos < 0) || (pos > L.len)) {

fprintf(stderr, "insert: Invalid index %d\n",
pos);

return L;

}

if (L.len == MAXLEN) {

fprintf(stderr, "insert: List already full\n");

return L;

}

for (i = L.len; i > pos; --i) L.element[i] =
L.element[i-1];

L.element[pos] = ch;

++L.len;

return L;

}

The main function

main()
{
olist L;
L=init();
L=insert(L,'a',0);
print(L);
printf("\n");
L=insert(L,'b',0);
print(L);
printf("\n");
L=insert(L,'c',2);
print(L);
printf("\n");

}

 a

 ba

 bac

