
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Structures and Self-Referential
Structures

Sizeof Structures

#include<stdio.h>

#define MAXLEN 100

struct stud1 {

char name[MAXLEN];

char roll[MAXLEN];

int height;

float cgpa;

};

struct stud2{
char *name;
char *roll;
int height;
float cgpa;
};

main()
{
printf("%d\n",sizeof(struct

stud1));
printf("%d\n",sizeof(struct

stud2));
}

Sizeof the first structure

 When a structure is passed to a function, the corresponding
sizeof() bytes are copied to the formal argument of the function.

 For example, in my machine sizeof(struct stud) is 208. This
includes locations to store the arrays name and roll, the integer
height and the floating point number cgpa.

 When a struct stud variable is passed to a function, these 208
bytes are copied to the argument.

 This, in particular, implies that changes in the members of the
argument are not visible outside the function.

 This also includes changes in the arrays name and roll.
 When a struct stud value is returned from a function and

assigned to a variable in the caller function, 208 bytes are copied
from the returned value to the variable.

Sizeof the second structure

 Now sizeof(struct stud2) is 16. This is what is
needed to store two pointers, one integer and one
floating point number.

 These pointers may point to arrays (or may be
allocated memory dynamically), but the memory for
these arrays lies outside the structure variable.

 When we pass a struct stud2 variable to a function,
only 16 bytes are copied.
 That includes the pointers name and roll, but not the arrays

which they point to.
 Any change in the arrays pointed to by these pointers is

now visible to the caller function.

Lists

 A structure with pointer(s) to structure(s) of
the same type turns out to be very useful for
representing many interesting objects.

 The following figure illustrates how such
structures form the basic building block (a
node) for representing a list and a tree.

Tree

Structure Definition for nodes

 We will see later how such objects can be
dynamically created and maintained.

 For the time being, let us focus on how a
structure representing a node in a list or tree
can be defined.

The structure definition
 First consider a node in a list.
 Let us assume that we are dealing with a list of integers.
 In order to create the linked structure of the above figure, we need a node to

contain a pointer to another node of the same type.
 In practice, a node may contain data other than an integer and a pointer. For

simplicity here we restrict the members of a node to only these two fields.
 struct _listnode

{ int data;
struct _listnode *next;

};
One can also use type definitions:
 typedef struct _listnode

{
int data;
struct _listnode *next;

} listnode;

The formal tag after struct is needed

 An important thing to note here is that the formal tag after the
struct keyword (_listnode in the last example) was absolutely
necessary for these declarations, even when the new
structure is typedef'd.

 There is nothing other than this formal name that can specify
the type of the pointer next.

 It is only after the part inside curly braces can be defined
properly, when the typedef makes sense.

 After these definitions we can use individual variables and
pointers. The declaration
 listnode mynode, *head;
 defines a structure mynode of type listnode and a pointer

head to a structure of this type.
 So, mynode has a member called data, and a pointer to a

subsequent node, whose definition is also struct _listnode.
 Thus it is called self-referential structures.

The tree node defined using structures

 A node in a (binary) tree consists of two pointers, the first for
pointing to the left child and the second for pointing to the right
child.

 typedef struct _treenode
{ int data;

struct _treenode *left;
struct _treenode *right;

} treenode;
After this definition one can declare individual nodes like:

 treenode thatNode, leaf[100]; One can declare pointers to nodes
in the usual way:

 treenode *root; or by using other type definitions:
 typedef treenode *tnptr;

tnptr root;

Unions

 Suppose we want to make a list of nodes.
 Each node in the list may be one of two possible

types: a data node and a control node.
 Suppose further that a data node stores an int,

whereas a control node stores a control information
that can be specified by a 16-character string.

 A structure like the following can be used:
 struct foonode

{ int data;
char control[16];

} thisNode, fooArray[1024];

Unions is more space efficient for
conditional members
 The problem with this is that irrespective of whether a node is a

control node or a data node, the structure requires space for both
the data and the control string.

 A data node does not use the control string at all, and similarly a
control node does not require the data.

 That leads to unnecessary waste of space. In order to reduce the
space requirement of each node, we should use a union instead
of a struct.
 union barnode

{ int data;
char control[16];
} thisNode, barArray[1024];

Memory Space allocation of Unions

 In this case the compiler reserves the space that is sufficient to
store the biggest of the individual members.

 For example, the int member requires 4 bytes, whereas the
control string requires 16 bytes.

 For the struct foonode the compiler uses 20 bytes of memory.
For the union barnode, on the other hand, a memory of only 16
bytes is allocated.

 That memory (more correctly, a part of it) can be used as an
integer variable or as a character string.

 In other words, the members of a union occupy overlapping
space.

 When we say thatNode.data or barArray[51].data, the content of
the memory is interpreted as an integer, whereas
thatNode.control or barArray[51].control refers to a character
string.

 This may seem confusing initially, because it is not clear what data is
actually stored in the memory.

 Interpreting a character string as an integer need not always make
sense, and vice versa.

 The information regarding what kind of data a union stores is to be
maintained externally, i.e., outside the union.

 One possibility is to use unions in conjunction with structures.
 #define DATA_NODE 0

#define CONTROL_NODE 1
struct foobarnode

{ int what; /* can be either DATA_NODE or CONTROL_NODE */
union
{ int data;
char control[16];
} info;

} thatNode, foobarArray[1024];

 This structure stores the type of the node and then
the union of an integer and a character string.

 Depending on the value of what, the programmer is
to interpret the type of the node. If what is set to
DATA_NODE, one should use the union info as an
integer data and access this as thatNode.info.data
or as foobarArray[131].info.data.

 On the other hand, if what is set to
CONTROL_NODE, one should use the union as a
character string that can be accessed as
thatNode.info.control or as
foobarArray[131].info.control.

Example

#include <stdio.h>
typedef struct _foostruct
{ int intArray[512]; double dblArray[128];

char chrArray[1024];
struct _foostruct *next;

} foostruct;
typedef struct _barstruct
{ int type;

union {
int intArray[512]; double dblArray[128]; char chrArray[1024];

} data;
struct _barstruct *next; } barstruct;
int main ()

{ printf("sizeof(foostruct) = %d\n", sizeof(foostruct));
printf("sizeof(barstruct) = %d\n", sizeof(barstruct)); }

Size of unions

 sizeof(foostruct) = 4100
 size of int intArray[512]: 512x4=2048.
 double dblArray[128]: 128x8=1024.
 char chrArray[1024]: 1024.
 struct _foostruct *next: 4
 Total: 4100 bytes

 sizeof(barstruct) = 2056
 size of type: 4
 size of int intArray[512]: 512x4=2048.
 struct _foostruct *next: 4
 Total: 2056 bytes

