
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Structures and Self-Referential
Structures

Sizeof Structures

#include<stdio.h>

#define MAXLEN 100

struct stud1 {

char name[MAXLEN];

char roll[MAXLEN];

int height;

float cgpa;

};

struct stud2{
char *name;
char *roll;
int height;
float cgpa;
};

main()
{
printf("%d\n",sizeof(struct

stud1));
printf("%d\n",sizeof(struct

stud2));
}

Sizeof the first structure

 When a structure is passed to a function, the corresponding
sizeof() bytes are copied to the formal argument of the function.

 For example, in my machine sizeof(struct stud) is 208. This
includes locations to store the arrays name and roll, the integer
height and the floating point number cgpa.

 When a struct stud variable is passed to a function, these 208
bytes are copied to the argument.

 This, in particular, implies that changes in the members of the
argument are not visible outside the function.

 This also includes changes in the arrays name and roll.
 When a struct stud value is returned from a function and

assigned to a variable in the caller function, 208 bytes are copied
from the returned value to the variable.

Sizeof the second structure

 Now sizeof(struct stud2) is 16. This is what is
needed to store two pointers, one integer and one
floating point number.

 These pointers may point to arrays (or may be
allocated memory dynamically), but the memory for
these arrays lies outside the structure variable.

 When we pass a struct stud2 variable to a function,
only 16 bytes are copied.
 That includes the pointers name and roll, but not the arrays

which they point to.
 Any change in the arrays pointed to by these pointers is

now visible to the caller function.

Lists

 A structure with pointer(s) to structure(s) of
the same type turns out to be very useful for
representing many interesting objects.

 The following figure illustrates how such
structures form the basic building block (a
node) for representing a list and a tree.

Tree

Structure Definition for nodes

 We will see later how such objects can be
dynamically created and maintained.

 For the time being, let us focus on how a
structure representing a node in a list or tree
can be defined.

The structure definition
 First consider a node in a list.
 Let us assume that we are dealing with a list of integers.
 In order to create the linked structure of the above figure, we need a node to

contain a pointer to another node of the same type.
 In practice, a node may contain data other than an integer and a pointer. For

simplicity here we restrict the members of a node to only these two fields.
 struct _listnode

{ int data;
struct _listnode *next;

};
One can also use type definitions:
 typedef struct _listnode

{
int data;
struct _listnode *next;

} listnode;

The formal tag after struct is needed

 An important thing to note here is that the formal tag after the
struct keyword (_listnode in the last example) was absolutely
necessary for these declarations, even when the new
structure is typedef'd.

 There is nothing other than this formal name that can specify
the type of the pointer next.

 It is only after the part inside curly braces can be defined
properly, when the typedef makes sense.

 After these definitions we can use individual variables and
pointers. The declaration
 listnode mynode, *head;
 defines a structure mynode of type listnode and a pointer

head to a structure of this type.
 So, mynode has a member called data, and a pointer to a

subsequent node, whose definition is also struct _listnode.
 Thus it is called self-referential structures.

The tree node defined using structures

 A node in a (binary) tree consists of two pointers, the first for
pointing to the left child and the second for pointing to the right
child.

 typedef struct _treenode
{ int data;

struct _treenode *left;
struct _treenode *right;

} treenode;
After this definition one can declare individual nodes like:

 treenode thatNode, leaf[100]; One can declare pointers to nodes
in the usual way:

 treenode *root; or by using other type definitions:
 typedef treenode *tnptr;

tnptr root;

Unions

 Suppose we want to make a list of nodes.
 Each node in the list may be one of two possible

types: a data node and a control node.
 Suppose further that a data node stores an int,

whereas a control node stores a control information
that can be specified by a 16-character string.

 A structure like the following can be used:
 struct foonode

{ int data;
char control[16];

} thisNode, fooArray[1024];

Unions is more space efficient for
conditional members
 The problem with this is that irrespective of whether a node is a

control node or a data node, the structure requires space for both
the data and the control string.

 A data node does not use the control string at all, and similarly a
control node does not require the data.

 That leads to unnecessary waste of space. In order to reduce the
space requirement of each node, we should use a union instead
of a struct.
 union barnode

{ int data;
char control[16];
} thisNode, barArray[1024];

Memory Space allocation of Unions

 In this case the compiler reserves the space that is sufficient to
store the biggest of the individual members.

 For example, the int member requires 4 bytes, whereas the
control string requires 16 bytes.

 For the struct foonode the compiler uses 20 bytes of memory.
For the union barnode, on the other hand, a memory of only 16
bytes is allocated.

 That memory (more correctly, a part of it) can be used as an
integer variable or as a character string.

 In other words, the members of a union occupy overlapping
space.

 When we say thatNode.data or barArray[51].data, the content of
the memory is interpreted as an integer, whereas
thatNode.control or barArray[51].control refers to a character
string.

 This may seem confusing initially, because it is not clear what data is
actually stored in the memory.

 Interpreting a character string as an integer need not always make
sense, and vice versa.

 The information regarding what kind of data a union stores is to be
maintained externally, i.e., outside the union.

 One possibility is to use unions in conjunction with structures.
 #define DATA_NODE 0

#define CONTROL_NODE 1
struct foobarnode

{ int what; /* can be either DATA_NODE or CONTROL_NODE */
union
{ int data;
char control[16];
} info;

} thatNode, foobarArray[1024];

 This structure stores the type of the node and then
the union of an integer and a character string.

 Depending on the value of what, the programmer is
to interpret the type of the node. If what is set to
DATA_NODE, one should use the union info as an
integer data and access this as thatNode.info.data
or as foobarArray[131].info.data.

 On the other hand, if what is set to
CONTROL_NODE, one should use the union as a
character string that can be accessed as
thatNode.info.control or as
foobarArray[131].info.control.

Example

#include <stdio.h>
typedef struct _foostruct
{ int intArray[512]; double dblArray[128];

char chrArray[1024];
struct _foostruct *next;

} foostruct;
typedef struct _barstruct
{ int type;

union {
int intArray[512]; double dblArray[128]; char chrArray[1024];

} data;
struct _barstruct *next; } barstruct;
int main ()

{ printf("sizeof(foostruct) = %d\n", sizeof(foostruct));
printf("sizeof(barstruct) = %d\n", sizeof(barstruct)); }

Size of unions

 sizeof(foostruct) = 4100
 size of int intArray[512]: 512x4=2048.
 double dblArray[128]: 128x8=1024.
 char chrArray[1024]: 1024.
 struct _foostruct *next: 4
 Total: 4100 bytes

 sizeof(barstruct) = 2056
 size of type: 4
 size of int intArray[512]: 512x4=2048.
 struct _foostruct *next: 4
 Total: 2056 bytes

