CS11001/CS11002
Programming and Data
Structures (PDS)

(Theory: 3-1-0)

Strings

De-limiters in C

In C a string is defined to be a null-terminated character array.
The null character (\0") is used to indicate the end of the string.
Like any other arrays, C does not impose range checking of
array indices for strings.

Declaration of an array allocates a fixed space for it. You need
not use the entire space.

Instead you can store your data in the initial portion of the array.
It is, therefore, necessary to put a boundary of the actual data.
This is the reason why we pass the size parameter to functions
along with arrays.

o Strings handle it differently, namely by putting an explicit marker
at the end of the actual data.

Delimiter \0

(e[l [[ofa[:[s[el o [o e [T [o2]ofslofle] [[[[]1]

01234 5678510111213 14 15 16 17 18 18 20 21 22 23 24 25 26 27 28 28

Here we use an array of size 30.

The string "lIT Kharagpur, 721302" is stored in the
first 21 locations.

This is tellowed-by-the-rullcharacter———
A total of 22 characters is needed to represent this
string of length 21.

Whatever follows after this null character is
irrelevant for defining the string.

Delimiter \0

m Whatever follows after this null character is
irrelevant for defining the string.

m If we set the element at location 6 to "\O',
the array looks like:

[efale] Jfalolefaele [o [] | Leleefsfefefe] [T I []]]]

0123456789 1011121314 15 16 17 18 18 20 21 22 23 24 25 26 27 28 29

m Considered as a string this stands for
"IIT Kh'.

L Recall that C allows you to read from and write to
the locations at indices 30,31,... of this array.

m These are memory locations not allocated to the
array, since its size is 30.

m Writing beyond the allocated space is expected to
corrupt memory or even raise fatal run-time errors
(Segmentation faults).

= In particular, if you do not put the null character at
the end of the string, C keeps on searching for it and
may go out of the legal boundary and create
troubles.

, C offers some built-in functions for working with
strings. They assume (null-terminated) strings as
input and create (null-terminated) strings.

= You do not have to append the null character
explicitly. For example, the statement
o strepy(As- Y; ' '
to the character array A and also appends the required null
character at the end of it.
m In order to use these string functions you should
#include <string.h>. No additional libraries need be
linked during compilation time.

Reading and writing a string

#include<stdio.h>
main()

{
char month[15];

printf("Enter the string");
gets(month);

printf("The string is %s\n",month);

}

Program to illustrate char pointers

#include<stdio.h>
main()
{
char charr[]="Pointers and Strings";
char *chptr;
chptr=chatrr;
printf("address pointed to by the pointer is
%x\n",chptr);
printf("contents pointed by the pointer chptr is:
%c\n",*chptr);

}

Reading a printing an array of pointers to

ptrings-dynanmic memory aloeation———

ramshyamjadvi string2.c
#include<stdio.h>
#include<malloc.h>
main()

char *names[10];
inti;

for(i=0;i<3;i++)
names[i]=(char*)malloc(10*sizeof(char));

for(i=0;i<3;i++)
scanf("%s",namesli]);

for(i=0;i<3;i++)
printf("%s",namesli]);

}

String Library Functions

p int strlen (const char s[]);

o Returns the length (the number of characters
before the first null character) of the string s.

mystrlen function

#include<stdio.h>
#include<string.h>
int mystrlen(char *);
main()

char text[10];

printf("Enter string:");

scanf("%s" text);

printf("%s\n",text);

printf(text);

printf(": length is %d\n",mystrlen(text));

int mystrlen(char *ptr)
int cnt=0;
while(*ptr!="0")

{ cnt++; ptr++;

return(cnt);

}

Using pointers to write mystrlen()

#include<stdio.h>

main()

{

char string [80], *ptr;
ptr=string;

printf("Enter the string:");

while((*ptr++=getchar())!="\n");
*--ptr ="\0";

printf("string is %s\n",string);
printf("Length is %d\n",ptr-string);
}

mystrcpy function

include<stdio.h>
include<string.h>
void mystrcpy(char *, char *);

main()

{
int len;
char s1[]="Good";
char s2[10];

mystrcpy(s2,s1);//library function
printf("Copied string is %s\n",s2);
}

void mystrcpy(char *p, char *q)

while(*p++=*q++);

}

mystrcmp function

#include<stdio.h>
int mystrcmp(char *, char *);

main()

char str1[20], str2[20];
int k;
gets(strl);
gets(str2);
k=mystrcmp(stri,str2);
if('k)
printf("Both are the same strings\n");
else if(k>0)
printf("Strl is lesser than Str2\n");
else
printf("Strl is greater than Str2\n");
}

int mystrcmp(char *strl, char
*str2)

{
char *p, *q;

for(p=strl,q=str2;((*p==*q)&&(*
pI="0)&&(*q!="0"));p++,q++);

if((*p=="0"&&(*q=="0"))
return O;

else if(*p < *q) return 1;

else return -1;

}

