CS11001/CS11002
Programming and Data
Structures (PDS)

(Theory: 3-1-0)

Strings




De-limiters in C

In C a string is defined to be a null-terminated character array.
The null character (\0") is used to indicate the end of the string.
Like any other arrays, C does not impose range checking of
array indices for strings.

Declaration of an array allocates a fixed space for it. You need
not use the entire space.

Instead you can store your data in the initial portion of the array.
It is, therefore, necessary to put a boundary of the actual data.
This is the reason why we pass the size parameter to functions
along with arrays.

o Strings handle it differently, namely by putting an explicit marker
at the end of the actual data.

Delimiter \0
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Here we use an array of size 30.

The string "lIT Kharagpur, 721302" is stored in the
first 21 locations.

This is tellowed-by-the-rullcharacter———
A total of 22 characters is needed to represent this
string of length 21.

Whatever follows after this null character is
irrelevant for defining the string.




Delimiter \0

m Whatever follows after this null character is
irrelevant for defining the string.

m If we set the element at location 6 to "\O',
the array looks like:
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0123456789 1011121314 15 16 17 18 18 20 21 22 23 24 25 26 27 28 29

m Considered as a string this stands for
"IIT Kh'.

L Recall that C allows you to read from and write to
the locations at indices 30,31,... of this array.

m These are memory locations not allocated to the
array, since its size is 30.

m Writing beyond the allocated space is expected to
corrupt memory or even raise fatal run-time errors
(Segmentation faults).

= In particular, if you do not put the null character at
the end of the string, C keeps on searching for it and
may go out of the legal boundary and create
troubles.




, C offers some built-in functions for working with
strings. They assume (null-terminated) strings as
input and create (null-terminated) strings.

= You do not have to append the null character
explicitly. For example, the statement
o strepy(As- Y; ' '
to the character array A and also appends the required null
character at the end of it.
m In order to use these string functions you should
#include <string.h>. No additional libraries need be
linked during compilation time.

Reading and writing a string

#include<stdio.h>
main()

{
char month[15];

printf("Enter the string");
gets(month);

printf("The string is %s\n",month);

}




Program to illustrate char pointers

#include<stdio.h>
main()
{
char charr[]="Pointers and Strings";
char *chptr;
chptr=chatrr;
printf("address pointed to by the pointer is
%x\n",chptr);
printf("contents pointed by the pointer chptr is:
%c\n",*chptr);

}

Reading a printing an array of pointers to

ptrings-dynanmic memory aloeation———

ramshyamjadvi string2.c
#include<stdio.h>
#include<malloc.h>
main()

char *names[10];
inti;

for(i=0;i<3;i++)
names[i]=(char*)malloc(10*sizeof(char));

for(i=0;i<3;i++)
scanf("%s",namesli]);

for(i=0;i<3;i++)
printf("%s",namesli]);

}




String Library Functions

p int strlen (const char s[]);

o Returns the length (the number of characters
before the first null character) of the string s.

mystrlen function

#include<stdio.h>
#include<string.h>
int mystrlen(char *);
main()

char text[10];

printf("Enter string:");

scanf("%s" text);

printf("%s\n",text);

printf(text);

printf(": length is %d\n",mystrlen(text));

int mystrlen(char *ptr)
int cnt=0;
while(*ptr!="0")

{ cnt++; ptr++;

return(cnt);

}




Using pointers to write mystrlen()

#include<stdio.h>

main()

{

char string [80], *ptr;
ptr=string;

printf("Enter the string:");

while((*ptr++=getchar())!="\n");
*--ptr ="\0";

printf("string is %s\n",string);
printf("Length is %d\n",ptr-string);
}

mystrcpy function

include<stdio.h>
include<string.h>
void mystrcpy(char *, char *);

main()

{
int len;
char s1[]="Good";
char s2[10];

mystrcpy(s2,s1);//library function
printf("Copied string is %s\n",s2);
}

void mystrcpy(char *p, char *q)

while(*p++=*q++);

}




mystrcmp function

#include<stdio.h>
int mystrcmp(char *, char *);

main()

char str1[20], str2[20];
int k;
gets(strl);
gets(str2);
k=mystrcmp(stri,str2);
if('k)
printf("Both are the same strings\n");
else if(k>0)
printf("Strl is lesser than Str2\n");
else
printf("Strl is greater than Str2\n");
}

int mystrcmp(char *strl, char
*str2)

{
char *p, *q;

for(p=strl,q=str2;((*p==*q)&&(*
pI="0)&&(*q!="0"));p++,q++);

if((*p=="0"&&(*q=="0"))
return O;

else if(*p < *q) return 1;

else return -1;

}




