
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Passings functions to other
functions: pointers to functions

Pointers to functions

 A function like a variable has an address
location in the memory.

 Thus we can have pointer to a function.
 which can be passed as an argument to another

function.

 we call the function which is passed as the guest
function.

 we call the function to which the function is
passed as the host function.

Example

#include<stdio.h>
#include<string.h>

void funct1(int i, float f)
{

printf("%d %f\n",i,f);
}

int func2(char *s)
{
printf("%s\n",s);

}

Example

main()
{
char s[50];
void (*p)(int, float);
int (*q)(char *), i=5;
float f=1.23;
puts("Enter a string:");
gets(s);
puts(s);
p= funct1;
q=func2;
p(i,f);
q(s);

}

Declarations

 When a host function accepts a pointer to a
guest function, the declaration of the host
function is as follows:

host-funct-data-type host-function-name
(guest-funct-data-type (* guest-function-
name)(arg_type 1, arg_type 2,…);

Example

#include<stdio.h>

int large(int *a, int n)
{
int big, i;
big=a[0];
for(i=1;i<n;i++)
if(big<a[i])

big=a[i];
return big;
}

int small(int *a, int n)
{
int small, i;
small=a[0];
for(i=0;i<n;i++)

if(small>a[i])
small=a[i];

return small;
}

Function with pointer to function as
argument
void select(int *b, int m1, int (*q)(int *, int))

{

int ans;

ans=q(b,m1);

printf("%d\n",ans);

}

Passing pointer to function to a function

main()
{
int n, i, a[20], (*ptr)(int *, int);
printf("Enter the no of integers\n");
scanf("%d",&n);
for(i=0;i<n;i++)

scanf("%d",&a[i]);

ptr=large;
printf("Largest value is:\n");
select(a,n,ptr);
printf("Smallest value is: \n");
select(a,n,small);

}

More pointers

 What does this mean:

int *(*p)(int (*a)[]); ?

More pointers

 What does this mean:
int *(*p)(int (*a)[]); ?

 int *(*p)(…) means p is a pointer to a function which
returns pointer to an integer.

 int (*a)[] indicates pointer to an array. This is the
argument of the function.

 Thus, *(*p)(int (*a)[]) represents a pointer to a
function whose argument is a pointer to an array.

 Thus, int *(*p)(int (*a)[]) represents a pointer to a
function whose argument is a pointer to an array
and which returns pointer to an integer.
 What is int *(*p[10])(int (*a)[]); ?

Structures

What are structures?

 It is a heterogeneous user defined.
 a structure may contain different data types.

 Example:
#define MAXLEN 100
struct student {
char name[MAXLEN];
char roll[MAXLEN];
int height;
float cgpa;
};

Defining instances of structure data

 This declaration gives a user-defined data of type
struct student.

 That has four members: two character arrays of
names name and roll, an integer named height and
a floating point value named cgpa.

 The struct declaration only defines a data type but
no instances of data of this type.

 In order to declare specific instances of structure
data, one should employ the usual variable
declaration procedure.
 struct student thatStudent, FBStudents[60], *studPointer;

Another Example

 A second example is provided by complex numbers
which can be represented as pairs of real numbers.

 One can use the following structure:
struct comp {

double real;
double imag;
};

 One then uses the declaration
struct comp z, z1, z2;

to obtain specific instances of complex numbers.

Type definitions

 The typedef declarations are used to rename data
types in C.

 For example, if one plans to work with unsigned long
long int variables, but plans not to write that big a
name, one may define the following short-cut:

typedef unsigned long long int ull;
After this definition, the data type unsigned long long
int can be called also as ull, i.e., one can declare
variables as:

ull n, array[100], *ptr;

Typedefs using user defined data types

 One can also typedef pointers and arrays:
typedef ull *ullPointer;
typedef ull ullArray[128];

 Here we assume that unsigned long long int is already
typedef'd as ull.

 We use this definition to typedef two other data types.
 First, ullPointer is defined to be a pointer to an unsigned

long long int, whereas ullArray is defined to be an array
of 128 unsigned long long int data.

 One can instantiate data of these types in the usual way:
 ullPointer p; defines a pointer variable p, whereas
 ullArray A; defines an array A of 128 unsigned long

long int data.

Typedefs for structures

 In an analogous way, one can use typedef's to give
short single-word names to structure data types.

 For example, the declarations
typedef struct stud student;
typedef struct comp complex;

give names student and complex to the user-
defined data types struct stud and struct comp.

 The following variable declarations are legal after
these typedef's:
 student thatStudent, FBStudents[60], *studPointer;
 complex z, z1, z2;

Using typedef while defining structures

 One can combine a struct declaration and a subsequent typedef
as follows:

 typedef struct stud
{

char name[MAXLEN];
char roll[MAXLEN];
int height;
float cgpa;

} student;
 typedef struct

{ double real;
double imag;

} complex;

Initializing structures

 Structures can be initialized much in the same way as arrays can
be –
 by a curly-braced comma-separated list of initializing constant

values for the individual members.
 For example, the above student record can be initialized as:

struct stud thatStudent = { "Foolan Barik", "03FB1331", 175,
9.81 };

or with the typedef'd name as:
student thatStudent = { "Foolan Barik", "03FB1331", 175,

9.81 };
 Initializing values populate (fill up) the members of the variable in

the same order as they appear in the struct declaration.
 For the above example, the string name receives the value

"Foolan Barik", roll the value "03FB1331", height the value 175
and cgpa the value 9.81.

Accessing members of structures

 Accessing individual members of a structure is
different from what is done with arrays.

 Now one should write the name of a structure
variable followed by a dot (.) and then by the formal
name given to the member.

 For example, if thatStudent is initialized as above,
thatStudent.name refers to the string "Foolan Barik",
thatStudent.roll refers to the string "03FB1331",
thatStudent.height refers to the integer value 175
and thatStudent.cgpa to the floating point value
9.81.

Accessing members of array of
structures

 If we have an array of structures, one first
uses square brackets to refer to an element
of the array and then uses dot and a member
name to access the corresponding member
of the structure,

 For example, FBStudents[5].height refers to
the height field of the element at index 5 in
the array FBStudents.

Accessing members of a pointer to a
structure
 If we have a pointer to a structure, we first

dereference the pointer in order to obtain the
structure and then write dot and the member name.

 For example, if studPointer is a pointer to a struct
stud, the notation (*studPointer).roll refers to the
string holding the roll number of the student whose
records are pointed to by the pointer studPointer.

 There is an alternative way of writing the same
thing: studPointer->roll.

 The dereferencing * and the dot . are combined to
the symbol -> which C designers deemed to be an
intuitive and natural notation.

Example

 The following function computes the average
CGPA of the students of the Department of
Foobarnautic Engineering:

 float avCGPA (struct stud FBStudents[] , int
n)
{ float sum = 0; int i;

for (i=0; i<n; ++i)
sum += FBStudents[i].cgpa;

return (sum/(float)n); }

Example

 Here is how you can do the same with pointers:

 float avCGPA2 (struct stud FBStudents[] , int n)

{ float sum = 0;

int i; struct stud *p; //define a pointer to the structure

p = FBStudents; //p points to the structure stud
FBStudents

for (i=0; i<n; ++i)

{ sum += p->cgpa;

++p; }

return (sum/(float)n); }

