CS11001/CS11002
Programming and Data
Structures (PDS)

(Theory: 3-1-0)

The basic components of a digital
computer

m Input devices These are the devices using
which the user provides input instances. In a
programmable computer, input devices are
also used to input programs. Examples:
keyboard, mouse.

m Output devices These devices notify the

user about the outputs of a computation.
Example: screen, printer.

Processing unit

m The central processing unit (CPU) is the brain of the
computing device and performs the basic
processing steps. A CPU typically consists of:

Q

An arithmetic and logical unit (ALU): This provides the
basic operational units of the CPU. It is made up of units
(like adders, multipliers) that perform arithmetic operations
on integers and real numbers, and of units that perform
logical operations (logical and bitwise AND, OR etc.).

A control unit: This unit is responsible for controlling flow
of data and instructions.

General purpose registers: A CPU usually consists of a

finite number of memory cells that work as scratch
locations for storing intermediate results and values.

External memory

= The amount of memory (registers) resident in the CPU is typically
very small and is inadequate to accommodate programs and
data even of small sizes. Out-of-the-processor memory provides
the desired storage space. External memory is classified into two
categories:

u]

Main (or primary) memory: This is a high-speed memory that
stays close to the CPU. Programs are first loaded in the main
memory and then executed. Usually main memory is volatile, i.e.,
its contents are lost after power-down.

Secondary memory: This is relatively inexpensive, bigger and
low-speed memory. It is normally meant for off-line storage, i.e.,
storage of programs and data for future processing. One requires
secondary storage to be permanent, i.e., its contents should last
even after shut-down. Examples of secondary storage include
floppy disks, hard disks and CDROM disks.

‘ The von Neumann architecture

= John von
Neumann
proposed the
first usable draft
of a working
computer.

et

Derics
| Depy
| prer |
Ougput

(00
(00

Ceniral Procmaing Unk B & OR

How does a program run in a
computer?

m The inputs, the intermediate values and the
instructions defining the processing stage reside in
the (main) memory.

m Data area: The data area stores the variables
needed for the processing stage.

o The values stored in the data area can be read, written and
modified by the CPU.
o The data area is often divided into two parts:

m astack part : It typically holds all statically allocated memory
(global and local variables),

= a heap part: It is used to allocate dynamic memory to
programs during run-time.

Instruction area

m The instruction area stores a sequence of
instructions that define the steps of the program.

m Under the control of a clock, the computer carries
out a fetch-decode-execute cycle:

o in which instructions are fetched one-by-one from the
instruction area to the CPU

o decoded in the control unit
o and executed in the ALU.

Instruction Set Architecture (ISA): The CPU understands
only a specific set of instructions. The instructions stored in
memory must conform to this specification.

‘ The fetch-decode-execute cycle

m A sequence of machine instructions is copied
to the instruction area of the memory.

m Some global variables and input parameters
are copied to the data area of the memory.

m A particular control register, called the
program counter (PC), is loaded with the
address of the first instruction of the program.

m The CPU fetches the instruction from that
location in the memory that is currently stored
in the PC register.

‘ The fetch-decode-execute cycle

m The instruction is decoded in the control unit
of the CPU.

m The instruction may require one or more
operands.

o An operand may be either a data or a memory
address.

= A data may be either a constant (also called an
immediate operand) or a value stored in the data area of
the memory or a value stored in a register.

= An address may be either immediate or a resident of the
main memory or available in a register.

| The fetch-decode-execute cycle

= An immediate operand is available from the
instruction itself. The content of a register is
also available at the time of the execution of
the instruction.

m Finally, a variable value is fetched from the
data part of the main memory.

‘ The fetch-decode-execute cycle

m [If the instruction is a data movement operation, the
corresponding movement is performed.

o a "load" instruction copies the data fetched from memory to
a register

o a "store" instruction sends a value from a register to the
data area of the memory.

m If the instruction is an arithmetic or logical
Instruction, it is executed in the ALU after all the
operands are available in the CPU (in its registers).
The output from the ALU is stored back in a register.

| The fetch-decode-execute cycle

m If the instruction is a jump instruction, the instruction
must contain a memory address to jump to.

m The program counter (PC) is loaded with this
address.

o A jump may be conditional, i.e., the PC is loaded with the
new address if and only if some condition(s) is/are true.

» If the instruction is not a jump instruction, the
address stored in the PC is incremented by one.

= If the end of the program is not reached, the CPU
continues its fetch-decode-execute cycle.

Back to C Programs

‘ Example 3

#include <stdio.h>
main ()
{
int n;
scanf("%d",&n);
printf("%d\n",n*n);
}

| Example 4

#include <stdio.h>

main ()

{
int n;
scanf("%d",&n);
printf("%d\n",1/n);

‘ Example 5

#include <stdio.h>

main ()

{
int n;
scanf("%d",&n);
printf("%f\n",1.0/n);

}

‘ Character Sets in C

m Alphabets: A, B, ..., Z
a, b ..z
m Digits: 0, 1, ...9
m Special Characters:
,<>5%\|~#7?()""+etc.
m White Space Characters:
blank space, newline, tab etc

| Tdentifiers and Keywords

m |dentifiers are used to identify or name variables.

m |dentifiers names must be sequences of letters and
digits, and must begin with a letter

m The underscore character *_’ is considered a letter

= Names should not be the same as a keyword like
‘int’, ‘char’, ‘void’ etc.

m C is case sensitive.

m For any internal identifier, at least the first 31
characters are significant in any ANSI C Compiler.

‘ Variables

= A variable is an entity that has a value and is
known to the program by a name.

m A variable definition associates a memory
location with the variable name.

= A variable can have only one value assigned
to it at any given time during the execution of
the program.

m Its value gets updated/changed during the
execution of the program.
Example: f=1.8*c + 32

‘ Variable Names

Sequence of letters and digits.

First character is a letter.

Examples: i, rank1l, MAX, Min, class_rank
dataType

Invalid examples:
a’s, fact rec, 2sqroot
class,rank

10

‘ Data Types

m C language supports the following basic data types:
char: a single byte that can hold one character
int: an integer
float: a single precision floating point number
double: a double precision floating point number

Precision refers to the number of significant digits after
the decimal point.

‘ Data Types

m Abstraction is necessary.

m Integer Data Types:

Integers are whole numbers that can
assume both positive and negative values,
l.e., elements of the set:

{.3,-2,-1,-1,23,..}

11

Points:

m The term int may be omitted in the long and short
versions. For example, long int can also be written
as long, unsigned long long int also as unsigned
long long.

m ANSI C prescribes the exact size of int (and
unsigned int) to be either 16 bytes or 32 bytes, that
is, an int is either a short int or a long int.
Implementers decide which size they should select.
Most modern compilers of today support 32-bit int.

m The long long data type and its unsigned variant are
not part of ANSI C specification. However, many
compilers (including gcc) support these data types.

‘ Integer Data Type
i;':)eeger data sBiI;e Minimum value Maximum value
char 8 -27=-128 27-1=127
short int 16 -215=-32768 215.1=32767
int 32 -231=-2147483648 231-1=2147483647
long int 32 -231=-2147483648 231-1=2147483647
. -063=_ 263_
tong long int 64 9203372036854775808 1=9223372036854775807
unsigned char 8 0 28-1=255
unsigned short int 16 O 216-1=65535
unsigned int 32 0 232-1=4294967295
unsigned long int 32 0 232-1=4294967295
unsigned long long 64 0 264-
int 1=18446744073709551615

12

‘ Float Data Type

m Like integers, C provides representations of
real numbers and those representations are
finite.

m Depending on the size of the representation,
C's real numbers have got different names.

Real data type Bit size

float 32

double 64

long double 128
| Char data type

m char for representing characters.

= We need a way to express our thoughts in
writing.

m This has been traditionally achieved by using
an alphabet of symbols with each symbol
representing a sound or a word or some
punctuation or special mark.

m The computer also needs to communicate its
findings to the user in the form of something
written.

13

| Char data type

= Since the outputs are meant for human readers, it is
advisable that the computer somehow translates its
bit-wise world to a human-readable script.

m The Roman script (mistakenly also called the
English script) is a natural candidate for the
representation.

o The Roman alphabet consists of the lower-case letters (a
to z), the upper case letters (A to Z), the numerals (0
through 9) and some punctuation symbols (period, comma,
guotes etc.).

o In addition, computer developers planned for inclusion of

some more control symbols (hash, caret, underscore etc.).
Each such symbol is called a character.

| ASCII Code

= In order to promote interoperability between different computers,
some standard encoding scheme is adopted for the computer
character set.

= This encoding is known as ASCII (abbreviation for American
Standard Code for Information Interchange).

= In this scheme each character is assigned a unique integer value
between 32 and 127.

= Since eight-bit units (bytes) are very common in a computer's
internal data representation, the code of a character is
represented by an 8-bit unit. Since an 8-bit unit can hold a total of
28=256 values and the computer character set is much smaller
than that, some values of this 8-bit unit do not correspond to
visible characters.

14

| Printable Characters

m These values are often used for representing
invisible control characters (like line feed,
alarm, tab etc.) and extended Roman letters
(inflected letters like &, €, ¢). Some values are
reserved for possible future use. The ASCII
encoding of the printable characters is
summarized in the following table.

Decimal Hex Binary Character Decimal Hex Binary Character
32 20 00100000 SPACE 80 50 01010000 P
33 21 00100001 ! 81 51 01010001 Q
34 22 00100010 " 82 52 01010010 R
35 23 00100011 # 83 53 01010011 S
36 24 00100100 $ 84 54 01010100 T
37 25 00100101 % 85 55 01010101 U
38 26 00100110 & 86 56 01010110 \%
39 27 00100111 ' 87 57 01010111 w
40 28 00101000 (88 58 01011000 X
41 29 00101001) 89 59 01011001 Y
42 2a 00101010 * 90 5a 01011010 z
43 2b 00101011 + 91 5b 01011011 [
44 2c 00101100 y 92 5¢ 01011100 \
45 2d 00101101 - 93 5d 01011101 1
46 2e 00101110 . 94 5e 01011110 n
a7 2f 00101111 / 95 5f 01011111 _
48 30 00110000 0 96 60 01100000
49 31 00110001 1 97 61 01100001 a
50 32 00110010 2 98 62 01100010 b

15

51 33 00110011 3 99 63 01100011 c

52 34 00110100 4 100 64 01100100 d

53 35 00110101 5 101 65 01100101 e

54 36 00110110 6 102 66 01100110 f

55 37 00110111 7 103 67 01100111 [¢]

56 38 00111000 8 104 68 01101000 h

57 39 00111001 9 105 69 01101001 i

58 3a 00111010 106 6a 01101010 j

59 3b 00111011 H 107 6b 01101011 k

60 3c 00111100 < 108 6¢c 01101100 |

61 3d 00111101 = 109 6d 01101101 m

62 3e 00111110 > 110 6e 01101110 n

63 3f 00111111 ? 111 6f 01101111 o

64 40 01000000 @ 112 70 01110000 p

65 41 01000001 A 113 71 01110001 q

66 42 01000010 B 114 72 01110010 r

67 43 01000011 C 115 73 01110011 s

68 44 01000100 D 116 74 01110100 t

69 45 01000101 E 117 75 01110101 u

70 46 01000110 F 118 76 01110110 v
71 | 47 | 01000111 G 119 | 77 | 01110111 w
72 | 48 | 01001000 H 120 | 78 | 01111000 X
73 | 49 | 01001001 ! 121 | 79 | 01111001
74 | 4a | 01001010 J 122 | 7a | 01111010 z
75 | 4b | 01001011 K 123 | 7b | 01111011 {
76 | 4c | 01001100 L 124 | 7c | 01111100 |
77 | 4d | 01001101 M 125 | 7d | 01111101 }
78 | 4e | 01001110 N 126 | 7e | 01111110 ~
79 | 4f | 01001111 o 127 7f | 01111111 DELETE

16

‘ Qualifiers

m Qualifiers add more data types.
o typically size or sign.
o size: short or long
o sign: signed or unsigned
m signed short int, unsigned short int, signed
int, signed long int, long double, long int
m signed char and unsigned char

‘ A Comment

m A char data type is also an integer data type.

» If you want to interpret a char value as a character,
you see the character it represents. If you want to
view it as an integer, you see the ASCII value of that
character.

m For example, the upper case A has an ASCII value
of 65.
o An eight-bit value representing the character A
automatically represents the integer 65,

o because to the computer A is recognized by its ASCII code,
not by its shape, geometry or sound!

17

Pointer Data Type

= Pointers are addresses in memory.

= In order that the user can directly manipulate memory addresses,
C provides an abstraction of addresses.

= The memory location where a data item resides can be accessed
by a pointer to that particular data type. C uses the special
character * to declare pointer data types.

= A pointer to a double data is of data type double *.

= A pointer to an unsigned long int data is of type
unsigned long int *.
= A character pointer has the data type char *.

= We will study pointers more elaborately later in this course.

‘ Constants

m Defining a data type is not enough.

= You need to assign the variables and work
with specific values of various data types.

m Examples: PI (hopefully it will not change its
value!)

m 1.0/n is our previous example of finding
reciprocals has a constant.

18

| Integer Constants

= An integer constant is a non-empty sequence of decimal numbers preceded
optionally by a sign (+ or -).
= However, the common practice of using commas to separate groups of three (or
five) digits is not allowed in C.
Nor are spaces or any character other than numerals allowed.
Here are some valid integer constants:
332
-3002
+15
-00001020304
And here are some examples that C compilers do not accept:
3332
2,334
- 456
2-34
12ab56cd

‘ Hexadecimal values

m You can also express an integer in base 16, i.e., an
integer in the hexadecimal (abbreviated hex)
notation.

m In that case you must write either Ox or 0X before
the integer. Hexadecimal representation requires 16
digits 0,1,...,15. In order to resolve ambiguities the
digits 10,11,12,13,14,15 are respectively denoted by
a,b,c,d,e,f (or by A,B,C,D,E,F). Here are some valid
hexadecimal integer constants:

0x12ab56cd -0X123456 0OxABCD1234 +0XaBCd12

19

‘ Real Constants

m Real constants can be specified by the usual
notation comprising an optional sign, a decimal point
and a sequence of digits. Like integers no other
characters are allowed.

m Real numbers are sometimes written in the scientific
notation (like 3.45x1067). The following expressions
are valid for writing a real number in this fashion:
3.45e67 +3.45e67 -3.45e-67 .00345e-32 1e-15.

m You can also use E in place of e in this notation

20

