
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

The basic components of a digital
computer

 Input devices These are the devices using
which the user provides input instances. In a
programmable computer, input devices are
also used to input programs. Examples:
keyboard, mouse.

 Output devices These devices notify the
user about the outputs of a computation.
Example: screen, printer.

2

Processing unit

 The central processing unit (CPU) is the brain of the
computing device and performs the basic
processing steps. A CPU typically consists of:
 An arithmetic and logical unit (ALU): This provides the

basic operational units of the CPU. It is made up of units
(like adders, multipliers) that perform arithmetic operations
on integers and real numbers, and of units that perform
logical operations (logical and bitwise AND, OR etc.).

 A control unit: This unit is responsible for controlling flow
of data and instructions.

 General purpose registers: A CPU usually consists of a
finite number of memory cells that work as scratch
locations for storing intermediate results and values.

External memory

 The amount of memory (registers) resident in the CPU is typically
very small and is inadequate to accommodate programs and
data even of small sizes. Out-of-the-processor memory provides
the desired storage space. External memory is classified into two
categories:
 Main (or primary) memory: This is a high-speed memory that

stays close to the CPU. Programs are first loaded in the main
memory and then executed. Usually main memory is volatile, i.e.,
its contents are lost after power-down.

 Secondary memory: This is relatively inexpensive, bigger and
low-speed memory. It is normally meant for off-line storage, i.e.,
storage of programs and data for future processing. One requires
secondary storage to be permanent, i.e., its contents should last
even after shut-down. Examples of secondary storage include
floppy disks, hard disks and CDROM disks.

3

The von Neumann architecture

 John von
Neumann
proposed the
first usable draft
of a working
computer.

How does a program run in a
computer?
 The inputs, the intermediate values and the

instructions defining the processing stage reside in
the (main) memory.

 Data area: The data area stores the variables
needed for the processing stage.
 The values stored in the data area can be read, written and

modified by the CPU.
 The data area is often divided into two parts:

 a stack part : It typically holds all statically allocated memory
(global and local variables),

 a heap part: It is used to allocate dynamic memory to
programs during run-time.

4

Instruction area

 The instruction area stores a sequence of
instructions that define the steps of the program.

 Under the control of a clock, the computer carries
out a fetch-decode-execute cycle:
 in which instructions are fetched one-by-one from the

instruction area to the CPU

 decoded in the control unit

 and executed in the ALU.

Instruction Set Architecture (ISA): The CPU understands
only a specific set of instructions. The instructions stored in
memory must conform to this specification.

The fetch-decode-execute cycle

 A sequence of machine instructions is copied
to the instruction area of the memory.

 Some global variables and input parameters
are copied to the data area of the memory.

 A particular control register, called the
program counter (PC), is loaded with the
address of the first instruction of the program.

 The CPU fetches the instruction from that
location in the memory that is currently stored
in the PC register.

5

The fetch-decode-execute cycle

 The instruction is decoded in the control unit
of the CPU.

 The instruction may require one or more
operands.
 An operand may be either a data or a memory

address.
 A data may be either a constant (also called an

immediate operand) or a value stored in the data area of
the memory or a value stored in a register.

 An address may be either immediate or a resident of the
main memory or available in a register.

The fetch-decode-execute cycle

 An immediate operand is available from the
instruction itself. The content of a register is
also available at the time of the execution of
the instruction.

 Finally, a variable value is fetched from the
data part of the main memory.

6

The fetch-decode-execute cycle

 If the instruction is a data movement operation, the
corresponding movement is performed.
 a "load" instruction copies the data fetched from memory to

a register

 a "store" instruction sends a value from a register to the
data area of the memory.

 If the instruction is an arithmetic or logical
instruction, it is executed in the ALU after all the
operands are available in the CPU (in its registers).
The output from the ALU is stored back in a register.

The fetch-decode-execute cycle

 If the instruction is a jump instruction, the instruction
must contain a memory address to jump to.

 The program counter (PC) is loaded with this
address.
 A jump may be conditional, i.e., the PC is loaded with the

new address if and only if some condition(s) is/are true.

 If the instruction is not a jump instruction, the
address stored in the PC is incremented by one.

 If the end of the program is not reached, the CPU
continues its fetch-decode-execute cycle.

7

Back to C Programs

Example 3

#include <stdio.h>

main ()

{

int n;

scanf("%d",&n);

printf("%d\n",n*n);

}

8

Example 4

#include <stdio.h>

main ()

{

int n;

scanf("%d",&n);

printf("%d\n",1/n);

}

Example 5

#include <stdio.h>

main ()

{

int n;

scanf("%d",&n);

printf("%f\n",1.0/n);

}

9

Character Sets in C

 Alphabets: A, B, …, Z

a, b, …, z

 Digits: 0, 1, …9

 Special Characters:

, < > .; % \ | ~ # ? () “ “ + etc.

 White Space Characters:

blank space, newline, tab etc

Identifiers and Keywords

 Identifiers are used to identify or name variables.

 Identifiers names must be sequences of letters and
digits, and must begin with a letter

 The underscore character ‘_’ is considered a letter

 Names should not be the same as a keyword like
‘int’, ‘char’, ‘void’ etc.

 C is case sensitive.

 For any internal identifier, at least the first 31
characters are significant in any ANSI C Compiler.

10

Variables

 A variable is an entity that has a value and is
known to the program by a name.

 A variable definition associates a memory
location with the variable name.

 A variable can have only one value assigned
to it at any given time during the execution of
the program.

 Its value gets updated/changed during the
execution of the program.

Example: f= 1.8 * c + 32

Variable Names

 Sequence of letters and digits.

 First character is a letter.

 Examples: i, rank1, MAX, Min, class_rank

dataType

 Invalid examples:

a’s, fact rec, 2sqroot

class,rank

11

Data Types

 C language supports the following basic data types:

char: a single byte that can hold one character

int: an integer

float: a single precision floating point number

double: a double precision floating point number

Precision refers to the number of significant digits after
the decimal point.

Data Types

 Abstraction is necessary.

 Integer Data Types:

Integers are whole numbers that can
assume both positive and negative values,
i.e., elements of the set:

{ ..., -3, -2, -1, -, 1, 2, 3, ... }

12

Points:

 The term int may be omitted in the long and short
versions. For example, long int can also be written
as long, unsigned long long int also as unsigned
long long.

 ANSI C prescribes the exact size of int (and
unsigned int) to be either 16 bytes or 32 bytes, that
is, an int is either a short int or a long int.
Implementers decide which size they should select.
Most modern compilers of today support 32-bit int.

 The long long data type and its unsigned variant are
not part of ANSI C specification. However, many
compilers (including gcc) support these data types.

Integer Data Type

264-
1=18446744073709551615

064
unsigned long long
int

232-1=4294967295 032unsigned long int

232-1=4294967295 032unsigned int

216-1=65535 016unsigned short int

28-1=255 08unsigned char

263-
1=9223372036854775807

-263=-
9223372036854775808

64long long int

231-1=2147483647 -231=-214748364832long int

231-1=2147483647 -231=-214748364832int

215-1=32767 -215=-3276816short int

27-1=127 -27=-1288char

Maximum value Minimum value
Bit
size

Integer data
type

13

Float Data Type

 Like integers, C provides representations of
real numbers and those representations are
finite.

 Depending on the size of the representation,
C's real numbers have got different names.

128 long double

64 double

32 float

Bit size Real data type

Char data type

 char for representing characters.
 We need a way to express our thoughts in

writing.
 This has been traditionally achieved by using

an alphabet of symbols with each symbol
representing a sound or a word or some
punctuation or special mark.

 The computer also needs to communicate its
findings to the user in the form of something
written.

14

Char data type

 Since the outputs are meant for human readers, it is
advisable that the computer somehow translates its
bit-wise world to a human-readable script.

 The Roman script (mistakenly also called the
English script) is a natural candidate for the
representation.
 The Roman alphabet consists of the lower-case letters (a

to z), the upper case letters (A to Z), the numerals (0
through 9) and some punctuation symbols (period, comma,
quotes etc.).

 In addition, computer developers planned for inclusion of
some more control symbols (hash, caret, underscore etc.).
Each such symbol is called a character.

ASCII Code

 In order to promote interoperability between different computers,
some standard encoding scheme is adopted for the computer
character set.

 This encoding is known as ASCII (abbreviation for American
Standard Code for Information Interchange).

 In this scheme each character is assigned a unique integer value
between 32 and 127.

 Since eight-bit units (bytes) are very common in a computer's
internal data representation, the code of a character is
represented by an 8-bit unit. Since an 8-bit unit can hold a total of
28=256 values and the computer character set is much smaller
than that, some values of this 8-bit unit do not correspond to
visible characters.

15

Printable Characters

 These values are often used for representing
invisible control characters (like line feed,
alarm, tab etc.) and extended Roman letters
(inflected letters like ä, é, ç). Some values are
reserved for possible future use. The ASCII
encoding of the printable characters is
summarized in the following table.

b 0110001062982 001100103250

a 0110000161971 001100013149

` 0110000060960 001100003048

_ 010111115f95/ 001011112f47

^ 010111105e94. 001011102e46

] 010111015d93-001011012d45

\010111005c92, 001011002c44

[010110115b91+ 001010112b43

Z 010110105a90* 001010102a42

Y 010110015989) 001010012941

X 010110005888(001010002840

W 010101115787' 001001112739

V 010101105686& 001001102638

U 010101015585% 001001012537

T 010101005484$ 001001002436

S 010100115383# 001000112335

R 010100105282" 001000102234

Q 010100015181! 001000012133

P 010100005080SPACE 001000002032

Character BinaryHexDecimalCharacterBinaryHexDecimal

16

v 0111011076118F 010001104670

u 0111010175117E 010001014569

t 0111010074116D 010001004468

s 0111001173115C 010000114367

r 0111001072114B 010000104266

q 0111000171113A 010000014165

p 0111000070112@ 010000004064

o 011011116f111? 001111113f63

n 011011106e110> 001111103e62

m 011011016d109= 001111013d61

l 011011006c108< 001111003c60

k 011010116b107; 001110113b59

j 011010106a106: 001110103a58

i 01101001691059 001110013957

h 01101000681048 001110003856

g 01100111671037 001101113755

f 01100110661026 001101103654

e 01100101651015 001101013553

d 01100100641004 001101003452

c 0110001163993 001100113351

DELETE 011111117f127O 010011114f79

~ 011111107e126N 010011104e78

} 011111017d125M 010011014d77

| 011111007c124L 010011004c76

{ 011110117b123K 010010114b75

z 011110107a122J 010010104a74

y 0111100179121I 010010014973

x 0111100078120H 010010004872

w 0111011177119G 010001114771

17

Qualifiers

 Qualifiers add more data types.
 typically size or sign.

 size: short or long

 sign: signed or unsigned

 signed short int, unsigned short int, signed
int, signed long int, long double, long int

 signed char and unsigned char

A Comment

 A char data type is also an integer data type.

 If you want to interpret a char value as a character,
you see the character it represents. If you want to
view it as an integer, you see the ASCII value of that
character.

 For example, the upper case A has an ASCII value
of 65.
 An eight-bit value representing the character A

automatically represents the integer 65,

 because to the computer A is recognized by its ASCII code,
not by its shape, geometry or sound!

18

Pointer Data Type

 Pointers are addresses in memory.
 In order that the user can directly manipulate memory addresses,

C provides an abstraction of addresses.
 The memory location where a data item resides can be accessed

by a pointer to that particular data type. C uses the special
character * to declare pointer data types.

 A pointer to a double data is of data type double *.
 A pointer to an unsigned long int data is of type

unsigned long int *.
 A character pointer has the data type char *.

 We will study pointers more elaborately later in this course.

Constants

 Defining a data type is not enough.

 You need to assign the variables and work
with specific values of various data types.

 Examples: PI (hopefully it will not change its
value!)

 1.0/n is our previous example of finding
reciprocals has a constant.

19

Integer Constants

 An integer constant is a non-empty sequence of decimal numbers preceded
optionally by a sign (+ or -).

 However, the common practice of using commas to separate groups of three (or
five) digits is not allowed in C.

 Nor are spaces or any character other than numerals allowed.
 Here are some valid integer constants:

332
-3002
+15
-00001020304

 And here are some examples that C compilers do not accept:
3 332
2,334
- 456
2-34
12ab56cd

Hexadecimal values

 You can also express an integer in base 16, i.e., an
integer in the hexadecimal (abbreviated hex)
notation.

 In that case you must write either 0x or 0X before
the integer. Hexadecimal representation requires 16
digits 0,1,...,15. In order to resolve ambiguities the
digits 10,11,12,13,14,15 are respectively denoted by
a,b,c,d,e,f (or by A,B,C,D,E,F). Here are some valid
hexadecimal integer constants:

0x12ab56cd -0X123456 0xABCD1234 +0XaBCd12

20

Real Constants

 Real constants can be specified by the usual
notation comprising an optional sign, a decimal point
and a sequence of digits. Like integers no other
characters are allowed.

 Real numbers are sometimes written in the scientific
notation (like 3.45x1067). The following expressions
are valid for writing a real number in this fashion:
3.45e67 +3.45e67 -3.45e-67 .00345e-32 1e-15.

 You can also use E in place of e in this notation

