
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Pointers to Pointers

Pointers

 Pointers are addresses in memory.
 In order that the user can directly manipulate

memory addresses,
 C provides an abstraction of addresses.
 The memory location where a data item resides can

be accessed by a pointer to that particular data type.
 C uses the special character * to declare pointer

data types.
 A pointer to a double data is of data type double *.
 A pointer to an unsigned long int data is of type

unsigned long int *.

Declaration of Pointers

 You may also declare pointers simultaneously with
other variables.

 All you have to do is to put an asterisk (*) before the
name of each pointer.
 long int *pointer, *p;

 float *fptr;

 double *standard;

 pointer and p are pointers to data of type long int.

 Similarly, standard is a pointer to a double data.

Typecasting

 Assume that piTo4 is a double variable that stores the value
97.4090910340

 (int *)piTo4An integer pointer that points to the memory location
97

 Pointer constants
 Well, there are no pointer constants actually.
 It is dangerous to work with constant addresses.
 You may anyway use an integer as a constant address.
 But doing that lets the compiler issue you a warning message.

Finally, when you run the program and try to access memory at a
constant address, you are highly likely to encounter a frustrating
mishap known as "Segmentation fault".

 That's a deadly enemy. Try to avoid it as and when you can!
 Incidentally, there is a pointer constant that is used widely. This

is called NULL. A NULL pointer points to nowhere.

Address Operator &

#include<stdio.h>

main()

{

int a=100; int b=200; int c=300;

printf(“Address: %x contains value: %d\n”,&a,a);

printf(“Address: %x contains value: %d\n”,&b,b);

printf(“Address: %x contains value: %d\n”,&c,c);

printf("size of int =%d\n",sizeof(int));

}

Addresses and contents of variables

-bash-3.2$./a.out

Address: bf94db60
contains value: 100

Address: bf94db5c
contains value: 200

Address: bf94db58
contains value: 300

size of int =4

Higher Address

100

200

300

bf94db60

bf94db5c

bf94db58

Pointer Variables

<data_type> *<ptrvar_name>;

 <data_type> could be any one of the primitive C
data types, like int, char, float.

 The <ptrvar_name> is any valid C variable name.

 The symbol * differentiates a common variable from
the pointer variable.

 It indicates the C compiler that the variable
<ptrvar_name> is a pointer variable.

 The pointer holds the address of any variable of the
specified type, <data_type>

Pointers accessing variables

#include <stdio.h>
main()
{
int *iptr;
int var1, var2;
var1=10; var2=20;
iptr=&var1;
printf("Address and contents of var1 is %x and

%d\n",iptr,*iptr);
iptr=&var2;
printf("Address and contents of var2 is %x and

%d\n",iptr,*iptr);
*iptr=125;
printf("Value of var2 is %d\n",var2);
(*iptr)++;
printf("Address and contents of var2 is %x and

%d\n",iptr,*iptr);
*iptr++;
printf("Value of var2 is %d\n",var2);
printf("Address and contents of var1 is %x and

%d\n",iptr,*iptr);

}

Address and contents of var1 is
bfc7fe8c and 10
Address and contents of var2 is
bfc7fe88 and 20
Value of var2 is 125
Address and contents of var2 is
bfc7fe88 and 126
Value of var2 is 126
Address and contents of var1 is
bfc7fe8c and 10

int *ptr and int* ptr are same.

However the first one helps you to
declare in one statement:

int *ptr, var1;

Dereferencing Pointers

 Dereferencing is an operation performed to
access and manipulate data contained in the
memory location.

 A pointer variable is said to be dereferenced
when the unary operator *, in this case called
the indirection operator, is used like a prefix
to the pointer variable or pointer expression.

 An operation performed on the dereferenced
pointer directly affects the value of the
variable it points to.

Example

#include<stdio.h>
main()
{

int *iptr, var1, var2;
iptr=&var1;
*iptr=25;
*ipr += 10;
printf(“variable var1 contains %d\n”,var1);
var2=*iptr;
printf(“variable var2 contains %d\n”,var2);
iptr=&var2;
*iptr += 20;
printff(“variable var2 now has %d\n”,var2);

}

Output

 variable var1 contains 35
 variable var2 contains 35
 variable var2 now has 55

Thus the two use of * are to be noted.
int *p for declaring a pointer variable
*p=10 is for indirection to the value in the address pointed by the
variable p.

This power of pointers is often useful, where direct access via
variables is not possible.

Example?

Another example

#include<stdio.h>
main()
{

int a=5, b=10;
int *p;
p=&a;
printf(“a=%d,b=%d\n”,a,b);
b=*p;

printf(“a=%d,b=%d\n”,a,b);
printf(“address of a is %x\n”,&a);
printf(“address of b is %x\n”,&b);
printf(“address pointed to by p is %x\n”,p);
printf(“value pointer p accesses is %d\n”,*p);

}

Output

 a=5,b=10

 a=5,b=5

 address of a is bfd03f0c

 address of b is bfd03f08

 address pointed to by p is bfd03f0c

 value pointer p accesses is 5

Swapping two numbers

 void main()
{int i, j; scanf(“%d %d”, &a, &b);
printf(“After swap: %d %d”,a,b);
swap(&a,&b);
printf(“After swap: %d %d”,a,b);

}
 void swap(int *a, int *b)

{
int temp = *a;
*a = *b;
*b = temp;
}

This is an example to show the
usefulness of pointer dereferencing

used to access variables, which
otherwise cannot be.

void pointers

 Pointers defined to be of specific data type
cannot hold the address of another type of
variable.

 It gives syntax error on compilation.

 Else use a void pointer (which is a general
purpose pointer type), which can point to
variables of any data type.

 But while dereferencing, we need an explicit
type cast.

Example

#include<stdio.h>
main()
{

float pi=3.14128;
int num=100;
void *p;

p=π
printf(“First p points to a float variable and access pi=%.5f\n",*((float *)p));
p=#
printf("Then p points to an integer variable and access num=%d\n",*((int *)p));

}

Pointer Arithmetic
#include <stdio.h>
main()
{
int i, n;
int smallest;
int a[50];
int *p;

scanf("%d",&n);

for(i=0;i<n;i++)
scanf("%d",&a[i]);

p=a;

smallest=*p;
p++;
for(i=1;i<n;i++)
{
if(smallest>*p)
smallest=*p;

p++;
}

printf("The smallest element is %d\n",smallest);
}
 ~

Pointer Arithmetic
#include <stdio.h>
main()
{
int i, n;
int smallest;
int a[50];
int *p;

scanf("%d",&n);

for(i=0;i<n;i++)
scanf("%d",&a[i]);

p=a;

smallest=*p;

for(i=1;i<n;i++)
{
if(smallest>*(++p))
smallest=*p;

}
printf("The smallest element is %d\n",smallest);
}

Examples of pointer arithmetic

int a=10, b=5, *p, *q;
p=&a;
q=&b;
printf("*p=%d,p=%x\n",*p,p);
p=p-b;
printf("*p=%d,p=%x\n",*p,p);
printf("a=%d, address(a)=%x\n",a,&a);

Output:
*p=10,p=bfbe4de8
*p=10,p=bfbe4dd4
a=10, address(a)=bfbe4de8

Some more valid pointer arithmetic
#include<stdio.h>

main()
{

int a=10, b=5, *p, *q;
p=&a;
q=&b;

printf("*p=%d,p=%x\n",*p,p);
p=p-b;
printf("*p=%d,p=%x\n",*p,p);
printf("a=%d, address(a)=%x\n",a,&a);
//p=p-q;
//printf("*p=%d,p=%x\n",*p,p);
p=p+a;
//p=(int *)(p-q)-a;
printf("*p=%d,p=%x\n",*p,p);
p=p-a;
printf("*p=%d,p=%x\n",*p,p);
p=p+b;
printf("*p=%d,p=%x\n",*p,p);

}

*p=10,p=bf92f328
*p=10,p=bf92f314
a=10, address(a)=bf92f328
*p=2212752,p=bf92f33c
*p=2212752,p=bf92f314
*p=10,p=bf92f328
(Here integer variable needs 4
bytes)

If a pointer p is to a type, d_type,
when incremented by i, the new
address p points to is:

current_address+i*sizeof(d_type)

Similarly for decrementation

Invalid pointer arithmetic

 p=-q;
 p<<=1;
 p=p+q;
 p=p+q+a;
 p=p*q;
 p=p*a;
 p=p/q;
 p=p/b;
 p=a/p;

