
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Multi-demensional Arrays

Multi-dimensional Arrays

 One-dimensional arrays are quite able to represent
many natural collections.

 There are some other natural collections that may
better be conceptualized as 2-dimensional data.

 The first example is a matrix. What else can be a
more natural 2-dimensional data other than a matrix
whose entries are natural numbers?

 So think of the following 4x5 matrix:
1 1 1 1 1
2 3 4 5 6
4 9 16 25 36
8 27 64 125 216

2-D Array as 1-D array and vice-versa

 We can write the entries in the row-major order and represent the
resulting flattened data as a one-dimensional array:

1 1 1 1 1 2 3 4 5 6 4 9 16 25 36 8 27 64 125 216

 As long as the column dimension of the matrix is known, the
original matrix can be recovered easily from this 1-D array.

 Consider an m-by-n matrix (a matrix with m rows and n columns).
It contains a total of mn elements.

 Let us number the rows 0,1,...,m-1 from top to bottom and the
columns 0,1,...,n-1 from left to right.

 The entry at position (i,j) then maps to the (ni+j)-th entry of the
one-dimensional array.

 On the other hand, the k-th entry of the one-dimensional array
corresponds to the (i,j)-th element of the matrix, where i = k / n
and j = k % n.

2-D arrays in C

 One-dimensional arrays suffice.
 Still, it is convenient and intuitive to visualize matrices as two-

dimensional arrays.
 C provides constructs to define and work with such arrays.
 Of course, the memory of a computer is typically treated as a

one-dimensional list of memory cells.
 Any two-dimensional structure has to be flattened using a

strategy like that mentioned above.
 C handles this for you. In other words, the abstraction relieves

you from the task of doing the index arithmetic explicitly.
 You refer to the (i,j)-th element as the (i,j)-th element. C

translates it into the appropriate address in the one-dimensional
memory.

Defining a 2-D array in C

 2-dimensional arrays can be defined like one-dimensional arrays,
but with two square-bracketed dimensions. For example, the
declaration

int matrix[20][10];
 This allocates memory for a 20x10 array of int variables.
 The first index (20) indicates the number of rows allocated,

whereas the second indicates the number of columns allocated.
 Here is another example:

#define MAXROW 50
#define MAXCOL 50
float M[MAXROW][MAXCOL];

Initialization

 int mat[4][5] = { { 1, 1, 1, 1, 1 }, /* The zeroth row */
{ 2, 3, 4, 5, 6 }, /* The first row */
{ 4, 9, 16, 15, 25 }, /* The second row */
{ 8, 27, 64, 125, 216 } /* The third row */ };

Rows of a 2-D array of characters can be initialized to constant
strings.

 char address[4][100] = { "Department of Foobarnautic
Engineering",

"Indian Institute of Technology",
"Kharagpur 721302",
"India" };

 One could have also written, char address [][100]=…

Accessing the 2-D array

 For a 2-D array A the (i,j)-th element is
treated as a variable and can be accessed by
the name A[i][j].

 Both the row numbering and the column
numbering start from 0.

 For example, the (1,3)-th element of mat is
accessed as mat[1][3] and, if initialized as
above, stores the int value 5.

Passing 2-D arrays to functions

 2-D arrays can be passed to functions using
a syntax similar to the declaration of 2-D
arrays:

 #define ROWDIM 10

#define COLDIM 12

int fooray (int A[ROWDIM][COLDIM], int r ,
int c) { ... }

Passing 2-D arrays to functions

 Here the actual row and column dimensions of the
used part of the array A are passed via the
parameters r and c.

 It is not mandatory to specify the row dimension
ROWDIM.

 But the column dimension COLDIM must be
specified, since 2-D to 1-D mapping in memory
requires the column dimension. Thus the declaration

int fooray (int A[][COLDIM], int r , int c) { ... }
is allowed, whereas the declarations

Passing 2-D arrays to functions

 int fooray (int A[][COLDIM], int r , int c) { ... }
is allowed, whereas the declarations

 int fooray (int A[][], int r , int c) { ... } and

 int fooray (int A[ROWDIM][], int r , int c) { ...
} are not allowed.

Pointers and 2-D arrays

 Like 1-D arrays, 2-D arrays are not copied
element-by-element to functions. A pointer is
only passed. This implies that changes made
to the array elements inside the function are
visible outside the function.

 Indeed 2-D arrays are pointers too. However,
these pointers are rather distinct in nature
from those pointers that represent 1-D arrays.
The situation is quite clumsy and confusing.

Example 1: Finding saddle point of a
matrix
#include<stdio.h>

main()
{
int i, j, k;
int m, n, p, q, min;
int a[10][10];
int flag=1;
// Read dimension and matrix elements
scanf("%d %d",&m, &n);

for(i=0;i<m;i++)
for(j=0;j<n;j++)

scanf("%d",&a[i][j]);

An element A[i][j] is a saddle point, if it is the
least element in the ith row and maximum

in the jth column.

for(i=0;i<m;i++)
{
min=a[i][0];
p=i;q=0;
//finding the min element of ith row
for(j=0;j<n;j++)
{

if(a[i][j]<min)
{
min=a[i][j];
p=i;q=j;

}
}

//checking if min element is max in the column
for(j=0;j<m;j++)
{
if(a[j][q]>a[p][q])

flag=0; //otherwise set flag to 0
}
if(flag)

printf("Saddle point is
a[%d][%d]=%d\n",p+1,q+1,a[p][q]);
else{ //it may be there is another min in the
//row which is the saddle

for(k=q+1;k<n;k++)
{
flag=1;
if(a[i][k]==min)//if any element is also min, then look into that col. also

{
for(j=0;j<m;j++)
{
if(a[j][k]>a[i][k])
flag=0;

}
}

else flag=0;

if(flag)
printf("Saddle point is a[%d][%d]=%d\n",i+1,k+1,a[i][k]);

}
}
if(!flag)//the ith row has no saddle point

printf("No such point in row %d\n",i+1);
flag=1;

}
}

Example 2: Matrix Multiplication

#include<stdio.h>
main()
{
int a[5][5], b[5][5], c[5][5];
int m1, n1, m2, n2, i, j;
void matread(int [][5],int ,int);
void matwrite(int [][5],int ,int);
void matmul(int [][5], int [][5], int [][5], int, int, int,

int);
scanf("%d %d",&m1,&n1);
scanf("%d %d",&m2, &n2);

Call to read and write functions

printf("Enter Matrix A\n");
matread(a,m1,n1);
matwrite(a,m1,n1);
printf("Enter Matrix B\n");
matread(b,m2,n2);
matwrite(b,m2,n2);

matmul(a,b,c,m1,n1,m2,n2);
matwrite(c,m1,n2);
}

Matrix Read and Write

void matread(int a[][5], int m,
int n)

{
int i, j;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{

scanf("%d",&a[i][j]);
}

}

void matwrite(int a[][5], int m,
int n)

{
int i, j;
printf("m=%d n=%d\n",m,n);

for(i=0;i<m;i++){
for(j=0;j<n;j++)
printf("%d ",a[i][j]);
printf("\n");

}

}

The Matrix Multiplication
void matmul(int a[][5], int b[][5], int c[][5], int m1, int n1, int m2, int n2)
{
int i, j, k;

printf("Dimension of A: row=%d, col=%d\n",m1, n1);
printf("Dimension of B: row=%d, col=%d\n",m2, n2);

printf("Matrix A:\n");
matwrite(a,m1,n1);
printf("Matrix B:\n");
matwrite(b,m2,n2);

if(n1 != m2)
printf("Mult not defined\n");

else{
for(i=0;i<m1;i++)

for(j=0;j<n2;j++)
c[i][j]=0;

for(i=0;i<m1;i++)
for(j=0;j<n2;j++)

for(k=0;k<n1;k++)
c[i][j]=c[i][j]+a[i][k]*b[k][j];

}
}

