
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

The IEEE Floating Point Numbers
(IEEE 754 format)

Floating Point Numbers (reals)

 To represent numbers like 0.5, 3.1415926, etc, we
need to do something else. First, we need to
represent them in binary, as

E.g. 11.00110 for 2+1+1/8+1/16=3.1875
 Next, we need to rewrite in scientific notation, as

1.100110 21. That is, the number will be written in
the form:
1.xxxxxx…  2e

2 2 3
2 1 0 1 2 3

1
2 2 2 2 2 2

2
m k

m kn a a a a a a a a  
                  

x = 0 or 1

Figure 3-7

Changing fractions to binary

 Multiply the fraction by 2,…

Example 17Example 17

Transform the fraction 0.875 to binary

SolutionSolution

Write the fraction at the left corner. Multiply the Write the fraction at the left corner. Multiply the
number continuously by 2 and extract the number continuously by 2 and extract the
integer part as the binary digit. Stop when the integer part as the binary digit. Stop when the
number is 0.0.number is 0.0.

0.875  1.750  1.5  1.0  0.0

0 . 1 1 1

Example 18Example 18

Transform the fraction 0.4 to a binary of 6 bits.

SolutionSolution

Write the fraction at the left cornet. Multiply the Write the fraction at the left cornet. Multiply the
number continuously by 2 and extract the number continuously by 2 and extract the
integer part as the binary digit. You can never integer part as the binary digit. You can never
get the exact binary representation. Stop when get the exact binary representation. Stop when
you have 6 bits.you have 6 bits.

0.4  0.8  1.6  1.2  0.4  0.8  1.6

0 . 0 1 1 0 0 1

Example of normalizationExample of normalization

MoveMove

 6
 2
6 
3 

Original NumberOriginal Number







Normalized

 x 
 x 
x 
 x 

Normalization

 Sign, exponent, and mantissa

Figure 3-8

IEEE standards for floating-point representation

Example 19Example 19

Show the representation of the normalized
number + 26 x 1.01000111001

SolutionSolution

The sign isThe sign is positivepositive. . The Excess_127 representation of The Excess_127 representation of
the exponent isthe exponent is 133133. . You add extra 0s on the right to You add extra 0s on the right to
make it 23 bits. The number in memory is stored as:make it 23 bits. The number in memory is stored as:

00 10000101 10000101 0100011100101000111001000000000000000000000000

Example of floatingExample of floating--point representationpoint representation

SignSign

1
0
1

Mantissa

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number

-22 x 1.11000011
+2-6 x 1.11001
-2-3 x 1.110011

ExponentExponent

10000001
01111001
01111100

Example 20Example 20

Interpret the following 32-bit floating-point
number

1 01111100 11001100000000000000000

SolutionSolution

The sign is negative. The exponent is The sign is negative. The exponent is ––3 (124 3 (124 ––

127). The number after normalization is127). The number after normalization is

--22--33 x 1.110011x 1.110011

Limitations in 32-bit Integer and Floating
Point Numbers
 Limited range of values (e.g. integers only from –231

to 231–1)

 Limited resolution for real numbers. E.g., if x is a
machine representable value, the next value is x + ε
(for some small ε). There is no value in between.
This causes “floating point errors” in calculation.
The accuracy of a single precision floating point
number is about 6 decimal places.

Limitations of Single Precision Numbers

 Given the representation of the single
precision floating point number format, what
is the largest magnitude possible? What is
the smallest number possible?

 With floating point number, it can happen that
1 + ε = 1. What is that largest ε?

Normalized numbers in Single Precision
Format

 The normalized numbers are:

(-1)S1.f 2E-127

Here S is the sign bit, f is the Mantissa and E is
the exponent.

Range of normalized numbers

 fmax
+= (1.111…1)2254-127

 E=0 is reserved for zero (with f=0) and denormalized
numbers (with f≠0).

 E=255 is reserved for ±∞ (with f=0) and for NaN (Not a
Number) (with f≠0).

 Thus, fmax
+=(2-2-23)2127=(1-2-24)2128.

 Similarly, fmin
+=(1.0)21-127=2-126.

 The exponent bias and significand range were
selected so that the reciprocal of all normalized
numbers can be represented without overflow. (in
particular fmin

+).

Denormalized Numbers

 The denormalized numbers provide representations for values
smaller than the smallest normalized number, lowering the
probability of an exponent underflow.
 which occurs when you get numbers lesser than fmin

+.
 Values of these numbers are (-1)S 0.f 2-126

 Also note that there are two representations for 0 (plus and minus). You
may include them as one denormalized number.

NaN±∞E=255

Denor
malized

0E=0

f≠0f=0

Smallest Denormalized Numbers

 Smallest Denormalized number is:

2-23 2-126=2-149.
 this reduces the gap between the smallest

representable number and zero.

 note that although the true value of the exponent
should have been 0-127=-127, the value of -126
was chosen as fmin

+=2-126. This reduces the gap
between the largest demormalized number and
the smallest normalized number.

Limitations of Single Precision Numbers

 Given the representation of the single
precision floating point number format, what
is the largest magnitude possible? What is
the smallest number possible?

 With floating point number, it can happen that
1 + ε = 1. What is that largest ε?

NaN (E=255 and f≠0)

 There are two kinds of Nan
 the signaling (trapping): sets an Invalid operation

exception flag whenever any arithmetic operation
with this NaN as an operand is attempted.

 quiet (non-trapping) A signaling NaN becomes a
quiet NaN, when used as an operand for an
arithmetic operation with the Invalid operation
exception flag disabled.

Invalid operations

1. Multiplying 0 by ∞
2. Dividing 0 by 0 or ∞ by ∞
3. Adding + ∞ and - ∞
4. Finding the square root of negative number
5. Calculating the remainder x modulo y, when

y is zero or x is infinite
6. Any operation on a signaling NaN

