
CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Important Announcements

 Next class on next Wednesday as usual

 First class test on Wednesday (6th Sep.)
 1 hour duration (6pm-7pm)

 Please assemble half an hour early

Recursions and Functions

What are recursions?

 Expressing an entity in terms of itself is called
recursion.

 But remember it is not a circular definition.
 here a solution to a bigger problem is expressed

in terms of solutions to smaller problems.

 a general mathematical concept

Iterative vs Recursive

 The factorial of 0 is 1, and the factorial of any
positive integer n is the product of all integers
from 1 to n.

 The factorial of 0 is 1. The factorial of any
positive integer n is the product of n and the
factorial of (n-1).
 the first definition is iterative, while the second one

is recursive.
 The factorial of (n-1) is solved in the same way,

until the factorial of 0 is asked for, which is 1.

The C function

int factorial (int n)

{

if (n < 0) return (-1); /* Error condition */

if (n == 0) return (1); /* Base case */

return(n * factorial(n-1)); /* Recursive call */

}

A recursive function

 A function that calls itself, or which calls another
function, which calls the first one is called recursive
function.

 The later definition can be extended to more than
two functions.

 However there are two important criteria:
 Each time a function call occurs, it must be closer, in some

sense to the solution.

 There must be a decision criteria for stopping the process
or computation: this being called “the escape hatch”.

Careless recursive coding can lead to
infinite loops!
 int Infinite(void)

{

Infinite();

return 1;

}

This will lead to an infinite loop! More
technically stack overflow.

Illustration of recursion

#include<stdio.h>
void CountNum (int n)
{

static int i = 1;
printf(“In the function, the value of n is:%d\n”,n);
printf(“\n The depth of the call is %d\n”,i++);
if(n>1)

CountNumber(n-1);
printf(“\n After recursive call, value of i=%d at
n=%d\n”, i--,n);

}

Illustration of recursion

void main()
{

int num = 3;
CountNum(num);

}
 The if statement is encountered and a recursive call

is made.
 The static variable i indicates the depth of the

recursive calls.
(Note a static variable is a special data type which is
initialized only once.)

Illustrations of recursion

 When the CountNum function is called with N=1, the
if statement is false.

 The function call CountNum is skipped.
 Thus the next statement is executed, which prints

the argument value.
 At this stage the closing brace is encountered.
 The function does not return control to the main, but

to the function body in CountNum, which gave the
last call. The last call was in the if statement, hence
the subsequent print statement is executed with i=3.

 This continues, till the final return to main.

Result

 In the function, the value of n is: 3
 The depth of the call is :1
 In the function, the value of n is: 2
 The depth of the call is :2
 In the function, the value of n is: 1
 The depth of the call is :3
 After recursive call, value of i is :3
 After recursive call, value of i=4 at n=1
 After recursive call, value of i=3 at n=2
 After recursive call, value of i=2 at n=3

Recursive Binary Search

 Searching and Sorting are inherently recursive in nature
 Many times, they follow a divide and conquer policy
 Binary Search searches a pre-sorted array of numbers
 In every function call, size of array to be sorted is halved
 Then, the half of the array in which the value might exist

is checked
 If there is a possibility of finding the number in this half,

this half is kept and the other half is discarded
 If there is no possibility of finding the number in this half,

this half is discarded and the other half is considered

The Binary Search Code

#include<stdio.h>
#define MAX 20
int binsearch(int a[], int key, int low, int high)
{
int pos, mid;
mid=(low+high)/2;
if(a[mid]==key) return(mid);
else if(a[mid]>key) pos=binsearch(a,key,low,mid);
else pos=binsearch(a,key,mid,high);
return(pos);

}

The Binary Search Code

main()
{

int a[MAX];
int m, i, n, key;
printf(“How many elements:\n”);
scanf(“%d”,&n);
for(i=0;i<n;i++) scanf(“%d”,&a[i]);
printf(“Enter the element to be searched?”);
scanf(“%d”,&key);
m=binsearch(a,key,0,n-1);
printf(“Location is %d\n”,m);

}

Printing Backwards Code
#include<stdio.h>
#define EOLN ‘\n’
int main()
{
printf(“Pls enter a line of text\n”);
reverse();
return 0;

}
void reverse(void)
{
char c;
if((c=getchar())!=EOLN) {

reverse();
}
putchar(c);
return;

}

Recursion vs Iteration

 Recursion makes writing of a program easy.

 However recursion comes with
disadvantages.

 Consider the example:

int F (int n) {

if (n == 0) return (0);

if (n == 1) return (1);

return (F(n-1)+F(n-2)); }

Recursion vs Iteration

 Computation of Fn by the iterative version (using
simple loops) requires n-1 additions and some
additional overheads proportional to n.

 But what about the recursive version?
 Let Sn denote the number of additions performed:

 If n = 25, we have Sn = 121392, whereas for n = 50, we
have Sn = 20365011073.

 Compare these figures with the very small numbers
(respectively 24 and 49) of additions performed by the
iterative method.

 The reason for this poor performance of the recursive
algorithm is that many Fis are computed multiple times.

Tail Recursion

 It is, therefore, often advisable to replace recursion by iteration.
 If some function makes only one recursive call and does nothing

after the recursive call returns (except perhaps forwarding the
value returned by the recursive call), then one calls this recursion
a tail recursion.

 Tail recursions are easy to replace by loops: since no additional
tasks are left after the call, no book-keeping need be performed,
i.e., there is no harm if we simply replace the local variables and
function arguments by the new values pertaining to the recursive
call.

 This leads to an iterative version with the loop continuation
condition dictated by the function arguments.

 The factorial and Fibonacci routines that we
presented earlier are not tail-recursive.

 The factorial routine performs a multiplication
after the recursive call returns, and so it feels
the necessity to store the formal parameter n.

 With the following implementation this need
is eliminated.

 Here we pass to the recursive function an
accumulating product.

A Tail Recursive Factorial function

 int facrec (int n , int prod)
{
if (n < 0) return (-1);
if (n == 0) return (prod);
return (facrec(n-1,n*prod));
}

int factorial (int n) {
return (facrec(n,1));

}

An Iterative Factorial Function

An Iterative Factorial Function

 int faciter (int n) {
int prod;
if (n < 0) return (-1); prod = 1;

/* Corresponds to facrec(n,1) */
while (n > 0) {

/* Corresponds to the sequence of recursive calls */
prod *= n; /* Second argument in the recursive call */
n = n - 1; /* Change the formal parameter */ }

return (prod); }

