
1

CS11001/CS11002
Programming and Data 

Structures (PDS)
(Theory: 3-1-0)

Introduction to arrays



2

What are Arrays?

 Arrays are our first example of structured data. 

 Think of a book with pages numbered 1,2,...,400.

 The book is a single entity, has its individual name, 
author(s), publisher, etc. but the contents of its 
different pages are (normally) different. 

 Moreover, Page 251 of the book refers to a 
particular page of the book. 

 To sum up, individual pages retain their identities 
and still we have a special handy bound structure 
treated as a single entity.. 

A motivating example

 Now imagine that you plan to sum 400 integers.
 Where will you store the individual integers? Thanks to your 

ability to declare variables, you can certainly do that. 
 Declare 400 variables with 400 different names, initialize them 

individually and finally add each variable separately to an 
accumulating sum. That's gigantic code just for a small task. 

 Arrays are there to help you. Like your book you now have a 
single name for an entire collection of 400 integers. 

 Declaration is small. 
 Codes for initialization and addition also become shorter, 

because you can now access the different elements of the 
collection by a unique index. 

 There are built-in C constructs that allow you do parameterized 
(i.e., indexed) tasks repetitively. 



3

Declaring arrays

 Similar to that of declaring data types.
 For example, the declaration 

 int intHerd[400]; creates an array of name intHerd that is 
capable of storing 400 int data. 

 A more stylistic way to do the same is illustrated 
now. 
 #define HERD_SIZE 400 

int intHerd[HERD_SIZE]; 
Note that all individual elements of a single array must be 
of the same type. You cannot declare an array some of 
whose elements are integers, the rest floating-point 
numbers. Such heterogeneous collections can be defined 
by other means that we will introduce later. 

Accessing individual array elements

 Once an array A of size s is declared, its individual 
elements are accessed as A[0],A[1],...,A[s-1]. 

 It is very important to note that: Array indexing in C is 
zero-based.

 This means that the "first" element of A is named as A[0] 
(not A[1]), the "second" as A[1], and so on. The last 
element is A[s-1]. 

 Each element A[i] is of data type as provided in the 
declaration. For example, if the declaration goes as: 

 int A[32]; each of the elements A[0],A[1],...,A[31] is a 
variable of type int. 

 You can do on each A[i] whatever you are allowed to do 
on a single int variable. 



4

C does not provide automatic range 
checking.

 If an array A of size s is declared, the element A[i] belongs to the 
array (more correctly, to the memory locations allocated to A) if 
and only if 0 <= i <= s-1. 

 However, you can use A[i] for other values of i. 
 No compilation errors (nor warnings) are generated for that. Now

when you run the program, the executable attempts to access a 
part of the memory that is not allocated to your array, nor 
perhaps to (the data area allocated to) your program at all.

 You simply do not know what resides in that part of the memory.
Moreover, illegal memory access may lead to the deadly 
"segmentation fault". 
 C is too cruel at certain points. Beware of that! 

Initializing an Array
 Arrays can be initialized during declaration. 
 For that you have to specify constant values for its elements. 
 The list of initializing values should be enclosed in curly braces. For 

the declaration 
 int A[5] = { 51, 29, 0, -34, 67 }; A[0] is initialized to 51, A[1] to 29, 

A[2] to 0, A[3] to -34 and A[4] to 67. 
 Similarly, for the declaration char C[10] = { ‘k', ‘h', ‘a', ‘r', ‘a', g', ‘p', 

‘u’, ‘r’, '\0' }; 
 C[0] gets the value ‘k', C[1] the value ‘h', and so on. The last 

(10th) location receives the null character. 
 Such null-terminated character arrays are also called strings. 

Strings can be initialized in an alternative way. The last 
declaration is equivalent to: char C[10] = “kharagpur"; 

 Now see that the trailing null character is missing here. C 
automatically puts it at the end. 

 Note also that for individual characters, C uses single quotes, 
whereas for strings, it uses double quotes. 



5

Initializing an Array

 If you do not mention sufficiently many initial values to populate 
an entire array, C uses your incomplete list to initialize the array 
locations at the lower end (starting from 0). 

 The remaining locations are initialized to zero. For example, the 
initialization 
 int A[5] = { 51, 29 }; is equivalent to int A[5] = { 51, 29, 0, 0, 0 }; If 

you specify an initialization list, you may omit the size of the
array. In that case, the array will be allocated exactly as much
space as is necessary to accommodate the initialization list. 

 You must, however, provide the square brackets to indicate that 
you are declaring an array; the size may be missing between 
them. 

 int A[] = { 51, 29 }; creates an array A of size 2 with A[0] holding 
the value 51 and A[1] the value 29. This declaration is equivalent 
to 
int A[2] = { 51, 29 }; but not to int A[5] = { 51, 29 }; 

An example to find the largest and 
smallest element in the vector
#include<stdio.h>
main()
{
int i, n;
float a[50], large, small;
printf(“Size of vector? “);
scanf(“%d”,&n);
printf(“\n Vector elements?\n”);
for(i=0;i<n;i++) scanf(“%f”,&a[i]);



6

An example to find the largest and 
smallest element in the vector
large=a[0]; small=a[0];
for(i=1;i<n;i++)
{

if(a[i]>large) 
large=a[i];

else if(a[i] < small)
small=a[i];

}
printf(“\n Largest element in vector is % f\n”,large);
printf(“\n Smallest element in vector is %f\n”,small);
}

Name of the array

 Take the case where f is an array of floating point 
numbers. It is declared as: 
 float f[50];

 The name of the array is f
 f denotes the memory location of the first floating point 

number in the array.
 Thus f is equivalent to &f[0].

 The statement 
scanf(“%f”,&f[0]); 

is thus equivalent to 
scanf(“%f”,f);



7

Passing arrays to functions

 We have seen how individual values (variables and 
pointers) can be passed to functions. Now let us see 
how we can pass an entire array to a function. 

 Suppose an array is defined as: 

#define MAXSIZE 100 

int myarr[MAXSIZE]; 

In order to pass the array myarr to a function 
foonction one may define the function as: 

int foonction ( int A[MAXSIZE] , int size ) { ... } 

Function call

 This function takes two arguments, the first is an array of size
MAXSIZE, and the second an integer argument named size.

 Here this second argument is meant for passing the actual size 
of the array. 

 Your array can hold 100 integers. However, at a certain point of
time you may be using only 32 locations (0 through 31) of the 
array. The other unused locations also hold some values. If they
are not initialized, they contain unpredictable values.

 You do not want these garbage values to be interpreted by your 
function as important ones. 

 So you specify the actual size to be 32. The function call should 
go like this: 

foonction(myarr,32);



8

Write a function to sort n integers in 
ascending order: Bubble Sort
#include<stdio.h>
main()
{
int a[20], i, n;
void sort_it(int a[], int );// also void sort_it(int [], int) is correct
printf("Enter the number of elements in the array (less than 21):");
scanf("%d",&n);
printf("Enter the elements\n");
for(i=0;i<n;i++)

scanf("%d",&a[i]);
sort_it(a,n);
printf("The sorted array\n");
for(i=0;i<n;i++)
printf("%d ",a[i]);

printf("\n");

}

The sort function

void sort_it(int a[],int n)
{
int i=0, j, f=0, temp;

for(i=0;i<n;i++)
for(j=i;j<n;j++)

if(a[i]>a[j])
{
temp=a[i];
a[i]=a[j];
a[j]=temp;

}
}

•This is an example of “call 
by reference. 
Any change in the array in 
the function also changes 
corresponding values in the 
calling function. 
•This is because like the swap 
function, here we are passing 
the address of the 0th location 
of the address. 



9

Call by reference

 In the function definition, you need not write 
a[20]

 This is because, what is passed is the value 
of the 0th address of the array (called base 
address) in the calling function (here main).

 All the subsequent access to the array is 
being done by adding the index of the array 
location to the base address. 

 Thus any modifications done in the function 
are reflected in the calling function.


