
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Functions without recursions

2

3 Steps to remember to use a function

1. Write the function.

2. Call the function (for now from main)

3. Declare the function

Declaration of a function

 int cube(int);
 The first int denotes the return type of the function.

 The second function is the type of the argument.

 This part should be mentioned early in the
program(s).

 It informs the compiler that the function takes an
integer as an input.

3

Functions with more than 1 arguments

 Write a function to find the maximum of 3 input
numbers.

 int maxfunc(int i, int j, int k)
{

int max;
if(i>=j && i>=k) max = i;
else if(j>=k) max = j;
else max = k;
return(max);

}

The main program

#include<stdio.h>
void main()
{
int m. a, b, c;
printf(“Input 3 numbers\n”);
scanf(“%d %d %d”,&a,&b,&c);
m=maxfunc(a,b,c);
printf(“The max term is %d\n”,m);

}

4

Another way

#include<stdio.h>

main()
{
int m, a, b, c;
int max(int, int);
printf("Enter 3 numbers:");
scanf("%d %d %d",&a, &b, &c);
printf("\na=%d, b=%d,

c=%d\n",a,b,c);
m=max(a,b);
m=max(m,c);
printf("Max term is %d\n",m);

}

int max(int a, int b)
{
if(a>=b) return(a);
else return(b);
}

Q: How will you use this
to compute the max

of n integers?

Where the Function is Declared?

 A function can be defined outside all functions. In
that case they become global (just like variables
declared outside)
 All functions in the program, can then use these functions

which are defined globally.
 Ex: #include<stdio.h>

int cube(int);
void main() { }
int cube(int n){ }

 Or, functions can be declared inside a function. In
that case only that function where it is declared can
use the declared function.

5

What is there to declare?

 In a C program, if the function comes after the
calling function, the compiler needs to be informed
via a declaration of:
 The name of the function
 The type of the value returned
 The number and type of arguments that must be supplied

in a call to the function.

 Note that if the function comes before the calling
function then the declaration is not needed.

 Function declarations are also called function
prototypes.

What is there to declare?

int cube(int n){
… /* Definition of the function*/

}
/* The function is defined before being called. Hence

the function declaration is not needed*/
void main(){
int …
cube(10);
…
}

6

Return value of a function

 A function may or may not return value.

 If a function does not return anything it is a
void function.

 In the function definition, the return type int is
default and may be skipped. Though it is a
good practice to explicitly state the return
type.

The template for function definitions

Typename FunctionName(Paramterlist)
{
statements declaring local variables;
statements performing operations on
variables;

return(value);
/* return is a keyword and must be used. In

case of a void function, this return step can
be skipped*/

7

Passing parameters

 Function parameters are the means of
communication between the calling and the
called function.

 In C all parameters are passed by value.
 Passing arguments by value means that the

contents of the arguments in the calling function
are not changed, even if they are changed in the
called function.

Example

#include<stdio.h>

void myfunc(int num)

{

printf(“In func the value of num is %d\n”,num);

num=19;

printf(“In func now value of num is %d\n”,num);

}

8

Example

void main()
{
int num;
num = 100;
printf(“In main value of num is %d\n”,num);
myfunc(num);
printf(“After calling func, value of num is
%d\n”,num);

}

An attempt to swap two integers

#include <stdio.h>
void swap(int a, int b)
{

int temp;
temp = a;
a= b;
b=temp;

}
void main()
{ scanf(“%d %d”,&a, &b); printf(“%d %d”,a,b);

swap(a,b); printf(“%d %d”,a,b);
}

Both the printfs will print the same output! So, swapping
does not take place. The variables in main are unupdated.

9

So, what may be done?

 In the function call swap, we also wanted to
change values of variables, depending on the
input from the user.

 While passing the variables to scanf, we
precede the variables by an & symbol:
 this meaning the address of the variable.

 So, instead of passing the two integers to the
swap function, we pass the addresses of the
integers we want to swap.

The swap program

 void swap(int *a, int *b)
{ //*a denotes the value at the address

int temp = *a;
*a = *b;
*b = temp;
}

void main()
{int i, j; scanf(“%d %d”, &a, &b);
printf(“After swap: %d %d”,a,b);
swap(&a,&b);
printf(“After swap: %d %d”,a,b);

}

10

Return values of functions

 constant: return(0);

 variable: return(a);

 user defined variables, general expressions

 Pointer to a function

 A function call (the call must return a value)

