
1

CS11001/CS11002
Programming and Data

Structures (PDS)
(Theory: 3-1-0)

Syllabus

1. Familiarization of a computer and the environment
and execution of sample programs

2. Expression evaluation
3. Conditionals and branching
4. Iteration
5. Functions
6. Recursion
7. Arrays
8. Structures
9. Linked lists
10. Data structures

2

Time Schedule

 Sections 11,12

 Class Room: F116

 Time Schedule:
 Wednesday 11:30-12:25

 Thursday 10:30-11:25

 Friday 08:30-09:25

 Class Teacher: Debdeep Mukhopadhyay

 Teaching Assistant (TA):
 Aniket Nayak

 Soma Saha

References
1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming

Language, Prentice Hall of India.

2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.

3. Byron Gottfried, Schaum's Outline of Programming with C,
McGraw-Hill.

4. Seymour Lipschutz, Data Structures, Schaum's Outlines
Series, Tata McGraw-Hill.

5. Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed,
Fundamentals of Data Structures in C, W. H. Freeman and Company.

6. R. G. Dromey, How to Solve it by Computer, Prentice-Hall of India.

3

A Reference url

 http://cse.iitkgp.ac.in/pds/semester/notes/

Marks distribution

 Theory :

Class test 1 : 10

Mid Semester Exam : 30

Class test 2 : 10

End Semester Exam : 50

4

Software

In Labs we use:

Linux work stations

GNU C Compiler

EMACS editor

Download GCC and EMACS for windows:

http://cse.iitkgp.ac.in/pds/software/

Lets Start!

5

Digital Computer

 A computer is a machine that can perform
computation. It is difficult to give a precise
definition of computation. Intuitively, a
computation involves the following three
components:
 Input: The user gives a set of input data.
 Processing: The input data is processed by a

well-defined and finite sequence of steps.
 Output: Some data available from the processing

step are output to the user.

Types of Problems

 Functional Problems: A set of arguments
a1,a2,...,an constitute the input. Some
function f(a1,a2,...,an) of the arguments is
calculated and output to the user.

 Decisional Problems: These form a special
class of functional problems whose outputs
are "yes" and "no" (or "true" and "false", or
"1" and "0", etc).

6

Types of Problems

 Search Problems: Given an input object, one tries
to locate some particular configuration pertaining to
the object and outputs the located configuration, or
"failure" if no configuration can be located.

 Optimization Problems: Given an object, a
configuration and a criterion for goodness, one finds
and reports the configuration pertaining to the
object, that is best with respect to the goodness
criterion. If no such configuration is found, "failure" is
to be reported.

Examples 1: Polynomial root finding

 Category: Functional problem

 Input: A polynomial with real coefficients
Output: One (or all) real roots of the input
polynomial
Processing: Usually, one involves a
numerical method (like the Newton-Raphson
method) for computing the real roots of a
polynomial.

7

Example 2: Matrix inversion

 Category: Functional problem

 Input: A square matrix with rational entries
Output: The inverse of the input matrix if it is
invertible, or "failure"
Processing: Gaussian elimination is a widely
used method for matrix inversion. Other
techniques may also be conceived of.

Example 3: Primality testing

 Category: Decision problem
 Input: A positive integer

Output: The decision whether the input integer is prime or not
Processing: For checking the primality of n, it is an obvious
strategy to divide n by integers between 2 and square root of n. If
a divisor of n is found, n is declared "composite" ("no"), else n is
declared "prime" ("yes").

 This obvious strategy is, however, very slow. More practical
primality testing algorithms are available. The first known
(theoretically) fast algorithm is due to three Indians (Agarwal,
Kayal and Saxena) from IIT Kanpur.

8

Problem 5: Traveling salesman problem
(TSP)
 Category: Optimization problem

 Input: A set of cities, the cost of traveling between each pair of
cities, and the criterion of cost minimization
Output: A route through all the cities with each city visited only
once and with the total cost of travel as small as possible

 Processing: Since the total number of feasible routes for n cities
is n!, a finite quantity, checking all routes to find the minimum is
definitely a strategy to solve the TSP. However, n! grows very
rapidly with n, and this brute-force search is impractical. We do
not know efficient solutions for the TSP. One may, however, plan
to remain happy with a suboptimal solution in which the total cost
is not the smallest possible, but close to it.

Problem 6: Weather prediction

 Category: Functional problem

 Input: Records of weather for previous days
and years. Possibly also data from satellites.
Output: Expected weather of Kharagpur for
tomorrow
Processing: One statistically processes and
analyzes the available data and makes an
educated extrapolating guess for tomorrow's
weather.

9

Problem 7: Web browsing

 Category: Functional problem
 Input: A URL (abbreviation for "Uniform Resource

Locator" which is colloquially termed as "Internet
site")
Output: Display (audio and visual) of the file at the
given URL
Processing: Depending on the type of the file at the
URL, one or more specific programs are run and the
desired output is generated. For example, a web
browser can render an HTML page, images in some
formats etc. For displaying a movie, a separate
software (or its plug-in) need be employed.

Problem 8: Chess : Can I win?

 Category: Search problem
 Input: A configuration of the standard 8x8 chess board and the

player ("white" or "black") who is going to move next
Output: A winning move for the next player, if existent, or
"failure"
Processing: In general, finding a winning chess move from a
given state is a very difficult problem. The trouble is that one may
have to explore an infinite number of possibilities. Even when the
total possibilities are finite in number, that number is so big that
one cannot expect to complete exploration of all of these
possibilities in a reasonable time. A more practical strategy is to
investigate all possible board sequences involving a small
number of moves starting from the given configuration and to
identify the best sequence under some criterion and finally
prescribe the first move in the best sequence.

10

Computers and Programs

 A computer is a device that can solve these
and similar problems. A digital computer
accepts, processes and outputs data in
digitized forms (as opposed to analog forms).

 Programming is a process of writing
instructions in a language that can be
understood by the computer so that a desired
task can be performed.

A Computer understands only 0s and 1s

 A high-level language helps you make your
communication with computers more abstract
and simpler and also widely machine-
independent.

 You then require computer programs that
convert your high-level description to the
assembly-level descriptions of individual
machines, one program for each kind of
CPU. Such a translator is called a compiler.

11

Three Steps

Step 1: Write the program in a high-level
language

 You should use a text editor to key in your
program. In the laboratory we instruct you to
use the emacs editor. You should also save
your program in a (named) file.

Step 2: Compile your program

 You need a compiler to do that. In the lab you should use the C
compiler cc (a.k.a. gcc).

cc myprog.c
If your program compiles successfully, a file named a.out (an

abbreviation of "assembler output") is created. This file stores the
machine instructions that can be understood by the particular
computer where you invoked the compiler.

 If compilation fails, you should check your source code.
 The reason of the failure is that you made one or more mistakes

in specifying your idea.
 Compilers are very stubborn about the syntax of your code.
 Even a single mistake may let the compiler churn out many angry

messages.

12

Step 3: Run the machine executable file

 by typing

 ./a.out (and then hitting the return/enter
button) at the command prompt.

First Program

#include <stdio.h>

main (){

printf("Hello, world!\n");

}

13

Second Program

#include <stdio.h>

main (){

int n;

scanf("%d",&n);

printf("%d\n",n);

}

