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Communication Cost

Communication cost in PRAM model : 1 unit per access

Does it really hold in practice even within a single processor ?
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Spot the difference

Add1

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

result += A[n*i + j];

Add2

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

result += A[i + n*j];
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Time Performance
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Time Performance ...
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Simple Addition

int add(const int numElements,

double * arr) {

double sum = 0.0;

for(int i = 0; i < numElements; i += 1)

sum += arr[i];

return sum;

}

int stride2Add(const int numElements,

double * arr) {

double sum = 0.0;

for(int i = 0; i < 2*numElements; i += 2)

sum += arr[i];

return sum;

}
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Strided Addition

int stridedAdd(const int numElements,

const int stride,

double * arr) {

double sum = 0.0;

const int lastElement = numElements * stride;

for(int i = 0; i < lastElement; i += stride)

sum += arr[i];

return sum;

}

Throughput =
Number of Elements

Time
=

Number of Elements
Clock cycles
Clock Speed

For a fixed number of elements, how would stride impact throughput ?

For a fixed stride, how would the number of elements impact
throughput ?
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Performance Gap between Single Processor and DRAM
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Intel Core i7

Clock Rate : 3.2 GHz

Number of cores : 4

Data Memory references per core per clock cycle : 2 64-bit references

Peak Instruction Memory references per core per clock cycle : 1
128-bit reference

Peak Memory bandwidth : 25.6 billion 64-bit data references +
12.8 billion 128-bit instruction references = 409.6 GB/s

DRAM Peak bandwidth : 25 GB/s

How is this gap managed ?
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Memory Hierarchy

Figure : Courtesy of John L. Hennessey & David A. Patterson
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Memory Hierarchy in Intel Sandybridge

Figure : Courtesy of Victor Eijkhout
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Details of experimental Machine

Intel Xeon CPU E5-2697 v2

Clock speed : 2.70GHz

Number of processor cores : 24

Caches :

L1D : 32 KB, L1I : 32 KB
Unified L2 : 256 KB
Unified L3 : 30720 KB
Line size : 64 Bytes

10.5.18.101, 10.5.18.102, 10.5.18.103, 10.5.18.104
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Impact of stride : Spatial Locality
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Impact of size : Temporal Locality
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Pipelining

Factory Assembly Line analogy

Fetch - Decode - Execute pipeline

Improved throughput (instructions completed per unit time)

Latency during initial ”wind-up” phase

Typical microprocessors have overall 10 - 35 pipeline stages

Can the number of pipeline stages be increased indefinitely ?
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Pipelining Stages

Pipeline depth : M

Number of independent, subsequent operations : N

Sequential time, Tseq = MN

Pipelined time, Tpipe = M + N − 1

Pipeline speedup, α =
Tseq

Tpipe
= MN

M+N−1 = M
1+M−1

N

Pipeline throughput, p = N
Tpipe

= N
M+N−1 = 1

1+M−1
N
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Pipelining Stages...
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Pipeline Magic

Scale1

for (int i = 0; i < n; ++i)

A[i] = scale * A[i];

Scale2

for (int i = 0; i < n-1; ++i)

A[i] = scale * A[i+1];

Scale3

for (int i = 1; i < n; ++i)

A[i] = scale * A[i-1];
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Pipeline Magic...
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Software Pipelining

Pipelining can be effectively used for scale1 and scale2, but not scale3

scale1 : Independent loop iterations
scale2 : False dependency between loop iterations
scale3 : Real dependency between loop iterations

Software pipelining

Interleaving of instructions in different loop iterations
Usually done by the compiler

Number of lines in assembly code generated by gcc under -O3
optimization

scale1 : 63
scale2 : 73
scale3 : 18
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Superscalarity

Direct instruction-level parallelism

Concurrent fetch and decode of multiple instructions

Multiple floating-point pipelines can run in parallel

Out-of-order execution and compiler optimization needed to properly
exploit superscalarity

Hard for compiler generated code to achieve more than 2-3
instructions per cycle

Modern microprocessors are up to 6-way superscalar

Very high performance may require assembly level programming
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SIMD

Single Instruction Multiple Data

Wide registers - up to 512 bits

16 integers
16 floats
8 doubles

Intel : SSE, AMD : 3dNow!, etc.

Advanced optimization options in recent compilers can generate
relevant code to utilize SIMD

Compiler intrinsics can be used to manually write SIMD code
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Why is matrix multiplication important?
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Matrix Representation

Single array contains entire matrix

Matrix arranged in row-major format

m×n matrix contains m rows and n columns

A(i , j) is the matrix entry at i th row and j th column of matrix A

It is the (i × n + j)th entry in the matrix array
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Triple nested loop

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < n; ++j)

{

double cij = 0.0;

for( int k = 0; k < n; k++ )

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}

Total number of multiplications : n3
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Row-based data decomposition in matrix C
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Parallel Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for schedule(static)

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < n; ++j)

{

double cij = 0.0;

for( int k = 0; k < n; k++ )

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}
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(Almost) Perfect Scaling for matrix of size 6000 × 6000
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How good is the serial performance?
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How good is the serial performance?

Normalized time becomes almost 4x when size of matrix grows from
1000 to 6000

Experiments done on 3.2 GHz machine

More than 5 clock cycles taken per double precision multiplication for
6000×6000 matrix !!!
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Memory Hierarchy Model for analysis

L lines of capacity m double precision numbers each

Tall Cache assumption : L > m

Replacement Policy : Least Recently Used

No Hardware Prefetching
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Memory Access Pattern during multiplication

A, B and C are square matrices of size n × n

n is large, i.e., n > L
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Memory Access Pattern for A

Sequential access : Accessing a row requires n
m cache misses
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Memory Access Pattern for B

Strided access : Accessing a column requires n cache misses
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Total cache misses

For computing every C (i , j), the number of cache misses : 1 + n
m + n

If n < mL, total cache misses : 2n2

m + n3

If n > mL, total cache misses : n2

m + n3

m + n3
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Is n < mL a practical assumption?

64 bytes cache line size means m = 8

256 KB L2 cache means mL = 32768

For practical problems n < 10− 15k

Thus n < mL and the total cache misses : 2n2

m + n3 = Θ(n3)

Can this be improved ?
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Alternate Memory Access Pattern

For computing the row C (i , :), cache misses : 2n
m + n2

m

Total cache misses : 2n2

m + n3

m = Θ(n
3

m )

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 45 / 96



Improved Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for( int k = 0; k < n; k++ )

{

const int kOffset = k*n;

for (int j = 0; j < n; ++j)

C[iOffset+j] += A[iOffset+j] * B[kOffset+j];

}

}

}

Triple-nested loop with the order of (i, j, k) changed to (i, k, j)
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ikj versus ijk
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(Almost) Perfect Scaling for matrix of size 6000 × 6000
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Blocking / Tiling

Assumptions for analysis : n%b = 0 and b%m = 0

Cache misses in loading a block : b2

m

Cache misses in finding a block of C : b2

m + b2

m
2n
b = b2

m + 2nb
m

Total cache misses : n2

b2
(b

2

m + 2nb
m ) = n2

m + 2n3

mb = Θ( n3

mb )
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Choosing blocking parameter b

The 3 blocks for A, B and C should just fit in the cache

3b2 = mL, i.e., b =
√

mL
3

For L1 cache of capacity 32KB, mL = 4096 and b = 36.95

A good value for b is 32

Total cache misses : 2n3

mb = 2
√
3n3

m
√
mL

= Θ( n3

m
√
Cache Size

)
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Tiled Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; i += BLOCK_SIZE)

{

const int iOffset = i * n;

for (int j = 0; j < n; j += BLOCK_SIZE)

for (int k = 0; k < n; k += BLOCK_SIZE)

{

/* Correct block dimensions if block "goes off

edge of" the matrix */

int M = min (BLOCK_SIZE, n-i);

int N = min (BLOCK_SIZE, n-j);

int K = min (BLOCK_SIZE, n-k);

/* Perform individual block dgemm */

do_block(n, M, N, K, A + iOffset + k,

B + k*n + j, C + iOffset + j);

}

}
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Tiled Multiply...

static void do_block (int n, int M, int N, int K, double* A,

double* B, double* C)

{

for (int i = 0; i < M; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < N; ++j)

{

double cij = 0.0;

for (int k = 0; k < K; ++k)

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}
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Tiled versus Normal
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Tiled MT scaling

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 55 / 96



Instruction Level Parallelism

Given that we have made the data being worked upon available in the
cache closest to the processor, we could use some ILP

ILP kicks in when there is significant amount of independent work
available in a single block of code

Loop unrolling can help us achieve that

Compilers also unroll loop but in this case there are too many nesting
levels for the compiler to do the correct thing
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Tiled Multiply with unrolling

for (int k = 0; k < K; ++k)

cij += A[iOffset+k] * B[k*n+j];

for (int k = 0; k < K; k += 8)

{

const double d0 = A[iOffset+k] * B[k*n+j];

const double d1 = A[iOffset+k+1] * B[(k+1)*n+j];

const double d2 = A[iOffset+k+2] * B[(k+2)*n+j];

const double d3 = A[iOffset+k+3] * B[(k+3)*n+j];

const double d4 = A[iOffset+k+4] * B[(k+4)*n+j];

const double d5 = A[iOffset+k+5] * B[(k+5)*n+j];

const double d6 = A[iOffset+k+6] * B[(k+6)*n+j];

const double d7 = A[iOffset+k+7] * B[(k+7)*n+j];

cij += (d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7);

}
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Tiled Multiply with unrolling...
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What about the L2 cache?

In addition to L1, blocking can be done for the L2 cache also ⇒
2-level tiled code

Next programming assignment
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Automatic tuning

Manual optimization and tuning is tedious and error-prone

Entire process needs to be redone in full for any new architecture

Multi-threaded optimization adds further complexity

Code generated automatically by parameterized code generators

Automatically Tuned Linear Algebra Software
Portable High Performance ANSI C

Essentially a search problem
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Dual Core

Figure : Courtesy of G. Hager & G. Wellein

Each core has it’s own cache for all levels

eg., Intel Montecito
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Quad Core

Figure : Courtesy of G. Hager & G. Wellein

Separate L1, Shared L2 (2 dual-core L2 groups)

Shared cache enables inter-core communication without going to the
main memory

Reduced latency and improved bandwidth

eg., Intel Harpertown
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Hexa Core

Figure : Courtesy of G. Hager & G. Wellein

6 single-core L1 groups, 3 dual-core L2 groups

L3 shared for all cores

Cache bandwidth shared across number of cores connected

eg., Intel Dunnington
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Uniform Memory Access (UMA)

Figure : Courtesy of G. Hager & G. Wellein

2 single-core CPUs share a common FrontSide bus (FSB)

Arbitration protocols built into the CPUs

Chipset connects to memory and other I/O systems

Data can be transfered to/from only one CPU at a time
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Uniform Memory Access...

Figure : Courtesy of G. Hager & G. Wellein

FSB not shared by sockets

Role of chipset becomes more important

Anisotropic system - Cores on same socket are ”closer” than those on
other sockets
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Integrated Memory Controller

Figure : Courtesy of G. Hager & G. Wellein

Integrated memory controller allows direct connection to memory
and/or other sockets

Intel QuickPath (QPI), AMD HyperTransport (HT)

eg. Intel Nehalem, AMD Shanghai
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ccNUMA

Figure : Courtesy of G. Hager & G. Wellein

cache-coherent Non Uniform Memory Access

Every UMA building block is a Locality Domain (LD)

Provides scalable bandwidth for large number of processors
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Cache Coherence

Explicit logic required to maintain cache coherence

MESI protocol

Modified : Cache line modified in this cache, resides in no other cache
Exclusive : Read from memory, not modified yet, resides in no other
cache
Shared : Read from memory, not modified yet, may reside in other
caches
Invalid : Data in cache line is garbage

Cache coherence traffic can hurt application performance if same
cache line is modified frequently by different locality domains (false
sharing).
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Back to π

const double deltaX = 1.0/(double)numPoints;

double pi = 0.0;

omp_set_num_threads(numThreads);

double components[numThreads];

for(int i = 0; i < numThreads; ++i)

components[i] = 0.0;

#pragma omp parallel shared(components)

{

const int nt = omp_get_num_threads();

const int pointsPerThread = numPoints/nt;

const int threadId = omp_get_thread_num();

double xi = (0.5 + pointsPerThread * threadId) * deltaX;

for(int i = 0; i < pointsPerThread; ++i)

{

components[threadId] += 4.0/(1 + xi * xi);

xi += deltaX;

}

}

for(int i = 0; i < numThreads; ++i)

pi += components[i];

pi *= deltaX;
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False Cache Line Sharing
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Back to π ...

const double deltaX = 1.0/(double)numPoints;

double pi = 0.0;

omp_set_num_threads(numThreads);

double components[numThreads];

#pragma omp parallel shared(components)

{

const int nt = omp_get_num_threads();

const int pointsPerThread = numPoints/nt;

double myComponent = 0.0;

const int threadId = omp_get_thread_num();

double xi = (0.5 + pointsPerThread * threadId) * deltaX;

for(int i = 0; i < pointsPerThread; ++i)

{

myComponent += 4.0/(1 + xi * xi);

xi += deltaX;

}

components[threadId] = myComponent;

}

for(int i = 0; i < numThreads; ++i)

pi += components[i];

pi *= deltaX;
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False Cache Line Sharing ...
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Non Uniform Access Time

numactl --hardware

available: 2 nodes (0-1)

node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

34 36 38 40 42 44 46

node 0 size: 131026 MB

node 0 free: 124290 MB

node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

35 37 39 41 43 45 47

node 1 size: 131072 MB

node 1 free: 126752 MB

node distances:

node 0 1

0: 10 20

1: 20 10
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Highly scalable ccNUMA

Figure : Courtesy of G. Hager & G. Wellein
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Function Based Profiling

Compiler modifies each function call to log the number of calls, its
callers and the time taken

Best suited when each function call takes significant time

Overhead significant if many functions with short runtime

eg., gprof from GNU binutils package
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Line Based Profiling

Program is sampled at regular intervals and program counter and
current call stack are recorded

Program needs to run long enough for results to be accurate

Possible to get profiling information down to the source and assembly
level

eg., gperftools from Google, Vtune Amplifier from Intel
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Hardware Performance Counters

Special on-chip registers which get incremented every time a certain
event occurs

Example events

Bus transactions
Mis-predicted branches
Cache Misses at various levels
Pipeline stalls
Number of loads and stores
Number of instructions executed

eg., Vtune Amplifier from Intel, oprofile, PAPI
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Optimize Memory Access

Sequential access of data in arrays

If arr [i ][j ] is in the cache, arr [i ][j + 1] is likely to be in the cache also.
However, arr [i + 1][j ] is NOT likely to be in the cache

Avoid using nested containers like vector of vectors for storing
matrices

Redesign data-structures for locality of access
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Optimize Memory Access...

const int size = 10000;

int a[size], b[size];

for(int i = 0; i < size; ++i)

{

b[i] = func(a[i]);

}

typedef struct { int a; int b;} myPair;

myPair ab[size];

for(int i = 0; i < size; ++i)

{

ab[i].b = func(ab[i].a);

}
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Minimize Jumps/Branches

Use inline functions for short functions.

Replace long if...else if...else if... chains by switch statements.

Such chains may lead to frequent branch mis-prediction.
Pipelined architectures incur severe cost (15-20 cycles) for every
mis-predicted branch.
Compiler may optimize switch into a table lookup requiring a single
jump.
If converting to switch is not possible, put the most common clauses at
the beginning of the if chain.

Where applicable, replace deeply recursive functions by iterative ones.
eg., BFS, DFS.
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Exploit instruction level parallelism

Most modern servers have 4-way superscalar cores.

Blocks of code (eg., in the body of a loop) should have enough
independent instructions.

Unrolling of loops may help in achieving this.

Inlined functions (small ones) also help, better register optimization
being the other benefit.

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 83 / 96



Loop Unrolling Example

for(int i = 0; i < 100; ++i)

{

if(i % 2 == 0)

func1(i);

else

func2(i);

func3(i);

}

for(int i = 0; i < 100; i += 2)

{

func1(i);

func3(i);

func2(i+1);

func3(i+1);

}
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General compiler based optimizations

First and foremost job : Correct and reliable mapping of high-level
source code to machine code

Major code transformation areas

Function inlining
Constant folding
Constant propagation
Common subexpression elimination
Register variables
Branch analysis
Loop analysis
Algebraic Reduction

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 85 / 96



Function Inlining

double square (double a)

{

return a * a;

}

double parabola (double b)

{

return square(b) + 1.0;

}

double parabola (double b)

{

return b * b + 1.0;

}
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Constant folding

double x, y, z;

y = x * (17.0/19.0);

z = x * 17.0 / 19.0;

double x, y, z;

y = x * 0.89473684210526316374;

z = x * 17.0 / 19.0;
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Constant propagation

double parabola (double b)

{

return b * b + 1.0;

}

double x, y;

x = parabola( 13.5 );

y = x * 2.3;

double x, y;

x = 183.25;

y = 421.475;
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Common subexpression elimination

double a, b, c, d;

b = (a + 6.0);

c = (a + b) * (a + b);

d = (a + b) / a;

double a, b, c, d, temp;

temp = a + a + 6.0;

c = temp * temp;

d = temp / a;
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Branch Analysis : Join identical branches

double x, y, z;

bool b;

if( b )

{

y = parabola(x);

z = y + 4.0;

}

else

{

y = square(x);

z = y + 4.0;

}

...

if( b )

{

y = parabola(x);

}

else

{

y = square(x);

}

z = y + 4.0;

...
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Branch Analysis : Eliminate jumps

int foo (int a, bool b)

{

if(b)

a = a * 4;

else

a = a * 5;

return a;

}

int foo (int a, bool b)

{

if(b)

{

a = a * 4;

return a;

}

else

{

a = a * 5;

return a;

}

}
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Other Compiler Optimizations

Loop unrolling

Loop invariant code motion

Instructions reordering and scheduling

Pointer elimination

...
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Standard optimization options for gcc

Option Details Number of optimization flags

-O0 Default, Fast compilation and
low memory usage during compilation 0

-O1 Quick and light transformations
that preserve execution ordering 39

-O2 More optimizations with instruction
reordering and inlining 83

-O3 Heavy duty optimizations with a
lot of transformations 93

-Ofast O3 with fast, standards incompliant
floating point calculations 94

-Os Optimize for size of executable 66
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Helping the compiler

Compilers can not optimize across modules

Declare objects and fixed size arrays (not very large) inside functions
that need them; Avoid dynamic memory allocation

Write programs to access data in arrays sequentially; Compilers can
not do this transformation

Use restrict keyword for pointers when the program logic rules out
pointer aliasing

ALWAYS PROFILE AFTER MAKING A SIGNIFICANT CHANGE
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Pointer Aliasing

void foo (int * a, int * p)

{

for( int i = 0; i < 1000; ++i)

a[i] = *p + 2;

}

void func1 ()

{

int arr[1000];

foo(arr, &arr[10]);

}

void func2 ()

{

int arr[1000], b = 20;

foo(arr, &b);

}
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Further Reading

Introduction to High Performance Computing for Scientists and
Engineers - Hager, Wellein : Chapter 1, 2, 3

http://agner.org/optimize/optimizing_cpp.pdf
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