
Computer Architecture : A Programmer’s Perspective

Abhishek Somani, Debdeep Mukhopadhyay

Mentor Graphics, IIT Kharagpur

September 9, 2016

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 1 / 96

Overview

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 2 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 3 / 96

Communication Cost

Communication cost in PRAM model : 1 unit per access

Does it really hold in practice even within a single processor ?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 4 / 96

Spot the difference

Add1

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

result += A[n*i + j];

Add2

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

result += A[i + n*j];

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 5 / 96

Time Performance

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 6 / 96

Time Performance ...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 7 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 8 / 96

Simple Addition

int add(const int numElements,

double * arr) {

double sum = 0.0;

for(int i = 0; i < numElements; i += 1)

sum += arr[i];

return sum;

}

int stride2Add(const int numElements,

double * arr) {

double sum = 0.0;

for(int i = 0; i < 2*numElements; i += 2)

sum += arr[i];

return sum;

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 9 / 96

Strided Addition

int stridedAdd(const int numElements,

const int stride,

double * arr) {

double sum = 0.0;

const int lastElement = numElements * stride;

for(int i = 0; i < lastElement; i += stride)

sum += arr[i];

return sum;

}

Throughput =
Number of Elements

Time
=

Number of Elements
Clock cycles
Clock Speed

For a fixed number of elements, how would stride impact throughput ?

For a fixed stride, how would the number of elements impact
throughput ?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 10 / 96

Performance Gap between Single Processor and DRAM

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 11 / 96

Intel Core i7

Clock Rate : 3.2 GHz

Number of cores : 4

Data Memory references per core per clock cycle : 2 64-bit references

Peak Instruction Memory references per core per clock cycle : 1
128-bit reference

Peak Memory bandwidth : 25.6 billion 64-bit data references +
12.8 billion 128-bit instruction references = 409.6 GB/s

DRAM Peak bandwidth : 25 GB/s

How is this gap managed ?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 12 / 96

Memory Hierarchy

Figure : Courtesy of John L. Hennessey & David A. Patterson

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 13 / 96

Memory Hierarchy in Intel Sandybridge

Figure : Courtesy of Victor Eijkhout

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 14 / 96

Details of experimental Machine

Intel Xeon CPU E5-2697 v2

Clock speed : 2.70GHz

Number of processor cores : 24

Caches :

L1D : 32 KB, L1I : 32 KB
Unified L2 : 256 KB
Unified L3 : 30720 KB
Line size : 64 Bytes

10.5.18.101, 10.5.18.102, 10.5.18.103, 10.5.18.104

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 15 / 96

Impact of stride : Spatial Locality

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 16 / 96

Impact of size : Temporal Locality

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 17 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 18 / 96

Pipelining

Factory Assembly Line analogy

Fetch - Decode - Execute pipeline

Improved throughput (instructions completed per unit time)

Latency during initial ”wind-up” phase

Typical microprocessors have overall 10 - 35 pipeline stages

Can the number of pipeline stages be increased indefinitely ?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 19 / 96

Pipelining Stages

Pipeline depth : M

Number of independent, subsequent operations : N

Sequential time, Tseq = MN

Pipelined time, Tpipe = M + N − 1

Pipeline speedup, α =
Tseq

Tpipe
= MN

M+N−1 = M
1+M−1

N

Pipeline throughput, p = N
Tpipe

= N
M+N−1 = 1

1+M−1
N

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 20 / 96

Pipelining Stages...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 21 / 96

Pipeline Magic

Scale1

for (int i = 0; i < n; ++i)

A[i] = scale * A[i];

Scale2

for (int i = 0; i < n-1; ++i)

A[i] = scale * A[i+1];

Scale3

for (int i = 1; i < n; ++i)

A[i] = scale * A[i-1];

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 22 / 96

Pipeline Magic...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 23 / 96

Software Pipelining

Pipelining can be effectively used for scale1 and scale2, but not scale3

scale1 : Independent loop iterations
scale2 : False dependency between loop iterations
scale3 : Real dependency between loop iterations

Software pipelining

Interleaving of instructions in different loop iterations
Usually done by the compiler

Number of lines in assembly code generated by gcc under -O3
optimization

scale1 : 63
scale2 : 73
scale3 : 18

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 24 / 96

Superscalarity

Direct instruction-level parallelism

Concurrent fetch and decode of multiple instructions

Multiple floating-point pipelines can run in parallel

Out-of-order execution and compiler optimization needed to properly
exploit superscalarity

Hard for compiler generated code to achieve more than 2-3
instructions per cycle

Modern microprocessors are up to 6-way superscalar

Very high performance may require assembly level programming

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 25 / 96

SIMD

Single Instruction Multiple Data

Wide registers - up to 512 bits

16 integers
16 floats
8 doubles

Intel : SSE, AMD : 3dNow!, etc.

Advanced optimization options in recent compilers can generate
relevant code to utilize SIMD

Compiler intrinsics can be used to manually write SIMD code

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 26 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 27 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 28 / 96

Why is matrix multiplication important?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 29 / 96

Matrix Representation

Single array contains entire matrix

Matrix arranged in row-major format

m×n matrix contains m rows and n columns

A(i , j) is the matrix entry at i th row and j th column of matrix A

It is the (i × n + j)th entry in the matrix array

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 30 / 96

Triple nested loop

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < n; ++j)

{

double cij = 0.0;

for(int k = 0; k < n; k++)

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}

Total number of multiplications : n3

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 31 / 96

Row-based data decomposition in matrix C

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 32 / 96

Parallel Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for schedule(static)

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < n; ++j)

{

double cij = 0.0;

for(int k = 0; k < n; k++)

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 33 / 96

(Almost) Perfect Scaling for matrix of size 6000 × 6000

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 34 / 96

How good is the serial performance?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 35 / 96

How good is the serial performance?

Normalized time becomes almost 4x when size of matrix grows from
1000 to 6000

Experiments done on 3.2 GHz machine

More than 5 clock cycles taken per double precision multiplication for
6000×6000 matrix !!!

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 36 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 37 / 96

Memory Hierarchy Model for analysis

L lines of capacity m double precision numbers each

Tall Cache assumption : L > m

Replacement Policy : Least Recently Used

No Hardware Prefetching

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 38 / 96

Memory Access Pattern during multiplication

A, B and C are square matrices of size n × n

n is large, i.e., n > L

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 39 / 96

Memory Access Pattern for A

Sequential access : Accessing a row requires n
m cache misses

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 40 / 96

Memory Access Pattern for B

Strided access : Accessing a column requires n cache misses

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 41 / 96

Total cache misses

For computing every C (i , j), the number of cache misses : 1 + n
m + n

If n < mL, total cache misses : 2n2

m + n3

If n > mL, total cache misses : n2

m + n3

m + n3

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 42 / 96

Is n < mL a practical assumption?

64 bytes cache line size means m = 8

256 KB L2 cache means mL = 32768

For practical problems n < 10− 15k

Thus n < mL and the total cache misses : 2n2

m + n3 = Θ(n3)

Can this be improved ?

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 43 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 44 / 96

Alternate Memory Access Pattern

For computing the row C (i , :), cache misses : 2n
m + n2

m

Total cache misses : 2n2

m + n3

m = Θ(n
3

m)

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 45 / 96

Improved Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; ++i)

{

const int iOffset = i*n;

for(int k = 0; k < n; k++)

{

const int kOffset = k*n;

for (int j = 0; j < n; ++j)

C[iOffset+j] += A[iOffset+j] * B[kOffset+j];

}

}

}

Triple-nested loop with the order of (i, j, k) changed to (i, k, j)

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 46 / 96

ikj versus ijk

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 47 / 96

(Almost) Perfect Scaling for matrix of size 6000 × 6000

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 48 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 49 / 96

Blocking / Tiling

Assumptions for analysis : n%b = 0 and b%m = 0

Cache misses in loading a block : b2

m

Cache misses in finding a block of C : b2

m + b2

m
2n
b = b2

m + 2nb
m

Total cache misses : n2

b2
(b

2

m + 2nb
m) = n2

m + 2n3

mb = Θ(n3

mb)

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 50 / 96

Choosing blocking parameter b

The 3 blocks for A, B and C should just fit in the cache

3b2 = mL, i.e., b =
√

mL
3

For L1 cache of capacity 32KB, mL = 4096 and b = 36.95

A good value for b is 32

Total cache misses : 2n3

mb = 2
√
3n3

m
√
mL

= Θ(n3

m
√
Cache Size

)

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 51 / 96

Tiled Multiply

void square_dgemm (int n, double* A, double* B, double* C)

{

for (int i = 0; i < n; i += BLOCK_SIZE)

{

const int iOffset = i * n;

for (int j = 0; j < n; j += BLOCK_SIZE)

for (int k = 0; k < n; k += BLOCK_SIZE)

{

/* Correct block dimensions if block "goes off

edge of" the matrix */

int M = min (BLOCK_SIZE, n-i);

int N = min (BLOCK_SIZE, n-j);

int K = min (BLOCK_SIZE, n-k);

/* Perform individual block dgemm */

do_block(n, M, N, K, A + iOffset + k,

B + k*n + j, C + iOffset + j);

}

}

} Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 52 / 96

Tiled Multiply...

static void do_block (int n, int M, int N, int K, double* A,

double* B, double* C)

{

for (int i = 0; i < M; ++i)

{

const int iOffset = i*n;

for (int j = 0; j < N; ++j)

{

double cij = 0.0;

for (int k = 0; k < K; ++k)

cij += A[iOffset+k] * B[k*n+j];

C[iOffset+j] += cij;

}

}

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 53 / 96

Tiled versus Normal

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 54 / 96

Tiled MT scaling

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 55 / 96

Instruction Level Parallelism

Given that we have made the data being worked upon available in the
cache closest to the processor, we could use some ILP

ILP kicks in when there is significant amount of independent work
available in a single block of code

Loop unrolling can help us achieve that

Compilers also unroll loop but in this case there are too many nesting
levels for the compiler to do the correct thing

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 56 / 96

Tiled Multiply with unrolling

for (int k = 0; k < K; ++k)

cij += A[iOffset+k] * B[k*n+j];

for (int k = 0; k < K; k += 8)

{

const double d0 = A[iOffset+k] * B[k*n+j];

const double d1 = A[iOffset+k+1] * B[(k+1)*n+j];

const double d2 = A[iOffset+k+2] * B[(k+2)*n+j];

const double d3 = A[iOffset+k+3] * B[(k+3)*n+j];

const double d4 = A[iOffset+k+4] * B[(k+4)*n+j];

const double d5 = A[iOffset+k+5] * B[(k+5)*n+j];

const double d6 = A[iOffset+k+6] * B[(k+6)*n+j];

const double d7 = A[iOffset+k+7] * B[(k+7)*n+j];

cij += (d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7);

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 57 / 96

Tiled Multiply with unrolling...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 58 / 96

What about the L2 cache?

In addition to L1, blocking can be done for the L2 cache also ⇒
2-level tiled code

Next programming assignment

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 59 / 96

Automatic tuning

Manual optimization and tuning is tedious and error-prone

Entire process needs to be redone in full for any new architecture

Multi-threaded optimization adds further complexity

Code generated automatically by parameterized code generators

Automatically Tuned Linear Algebra Software
Portable High Performance ANSI C

Essentially a search problem

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 60 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 61 / 96

Dual Core

Figure : Courtesy of G. Hager & G. Wellein

Each core has it’s own cache for all levels

eg., Intel Montecito

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 62 / 96

Quad Core

Figure : Courtesy of G. Hager & G. Wellein

Separate L1, Shared L2 (2 dual-core L2 groups)

Shared cache enables inter-core communication without going to the
main memory

Reduced latency and improved bandwidth

eg., Intel Harpertown

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 63 / 96

Hexa Core

Figure : Courtesy of G. Hager & G. Wellein

6 single-core L1 groups, 3 dual-core L2 groups

L3 shared for all cores

Cache bandwidth shared across number of cores connected

eg., Intel Dunnington

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 64 / 96

Uniform Memory Access (UMA)

Figure : Courtesy of G. Hager & G. Wellein

2 single-core CPUs share a common FrontSide bus (FSB)

Arbitration protocols built into the CPUs

Chipset connects to memory and other I/O systems

Data can be transfered to/from only one CPU at a time

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 65 / 96

Uniform Memory Access...

Figure : Courtesy of G. Hager & G. Wellein

FSB not shared by sockets

Role of chipset becomes more important

Anisotropic system - Cores on same socket are ”closer” than those on
other sockets

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 66 / 96

Integrated Memory Controller

Figure : Courtesy of G. Hager & G. Wellein

Integrated memory controller allows direct connection to memory
and/or other sockets

Intel QuickPath (QPI), AMD HyperTransport (HT)

eg. Intel Nehalem, AMD Shanghai

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 67 / 96

ccNUMA

Figure : Courtesy of G. Hager & G. Wellein

cache-coherent Non Uniform Memory Access

Every UMA building block is a Locality Domain (LD)

Provides scalable bandwidth for large number of processors

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 68 / 96

Cache Coherence

Explicit logic required to maintain cache coherence

MESI protocol

Modified : Cache line modified in this cache, resides in no other cache
Exclusive : Read from memory, not modified yet, resides in no other
cache
Shared : Read from memory, not modified yet, may reside in other
caches
Invalid : Data in cache line is garbage

Cache coherence traffic can hurt application performance if same
cache line is modified frequently by different locality domains (false
sharing).

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 69 / 96

Back to π

const double deltaX = 1.0/(double)numPoints;

double pi = 0.0;

omp_set_num_threads(numThreads);

double components[numThreads];

for(int i = 0; i < numThreads; ++i)

components[i] = 0.0;

#pragma omp parallel shared(components)

{

const int nt = omp_get_num_threads();

const int pointsPerThread = numPoints/nt;

const int threadId = omp_get_thread_num();

double xi = (0.5 + pointsPerThread * threadId) * deltaX;

for(int i = 0; i < pointsPerThread; ++i)

{

components[threadId] += 4.0/(1 + xi * xi);

xi += deltaX;

}

}

for(int i = 0; i < numThreads; ++i)

pi += components[i];

pi *= deltaX;

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 70 / 96

False Cache Line Sharing

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 71 / 96

Back to π ...

const double deltaX = 1.0/(double)numPoints;

double pi = 0.0;

omp_set_num_threads(numThreads);

double components[numThreads];

#pragma omp parallel shared(components)

{

const int nt = omp_get_num_threads();

const int pointsPerThread = numPoints/nt;

double myComponent = 0.0;

const int threadId = omp_get_thread_num();

double xi = (0.5 + pointsPerThread * threadId) * deltaX;

for(int i = 0; i < pointsPerThread; ++i)

{

myComponent += 4.0/(1 + xi * xi);

xi += deltaX;

}

components[threadId] = myComponent;

}

for(int i = 0; i < numThreads; ++i)

pi += components[i];

pi *= deltaX;

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 72 / 96

False Cache Line Sharing ...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 73 / 96

Non Uniform Access Time

numactl --hardware

available: 2 nodes (0-1)

node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

34 36 38 40 42 44 46

node 0 size: 131026 MB

node 0 free: 124290 MB

node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

35 37 39 41 43 45 47

node 1 size: 131072 MB

node 1 free: 126752 MB

node distances:

node 0 1

0: 10 20

1: 20 10

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 74 / 96

Highly scalable ccNUMA

Figure : Courtesy of G. Hager & G. Wellein

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 75 / 96

Outline

1 Motivating Example

2 Memory Hierarchy

3 Parallelism in Single CPU

4 Dense Matrix Multiplication
The Problem
Analysis
Improvement
Better Cache utilization

5 Multicore Architectures

6 Appendix : Writing Efficient Serial Programs

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 76 / 96

Function Based Profiling

Compiler modifies each function call to log the number of calls, its
callers and the time taken

Best suited when each function call takes significant time

Overhead significant if many functions with short runtime

eg., gprof from GNU binutils package

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 77 / 96

Line Based Profiling

Program is sampled at regular intervals and program counter and
current call stack are recorded

Program needs to run long enough for results to be accurate

Possible to get profiling information down to the source and assembly
level

eg., gperftools from Google, Vtune Amplifier from Intel

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 78 / 96

Hardware Performance Counters

Special on-chip registers which get incremented every time a certain
event occurs

Example events

Bus transactions
Mis-predicted branches
Cache Misses at various levels
Pipeline stalls
Number of loads and stores
Number of instructions executed

eg., Vtune Amplifier from Intel, oprofile, PAPI

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 79 / 96

Optimize Memory Access

Sequential access of data in arrays

If arr [i][j] is in the cache, arr [i][j + 1] is likely to be in the cache also.
However, arr [i + 1][j] is NOT likely to be in the cache

Avoid using nested containers like vector of vectors for storing
matrices

Redesign data-structures for locality of access

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 80 / 96

Optimize Memory Access...

const int size = 10000;

int a[size], b[size];

for(int i = 0; i < size; ++i)

{

b[i] = func(a[i]);

}

typedef struct { int a; int b;} myPair;

myPair ab[size];

for(int i = 0; i < size; ++i)

{

ab[i].b = func(ab[i].a);

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 81 / 96

Minimize Jumps/Branches

Use inline functions for short functions.

Replace long if...else if...else if... chains by switch statements.

Such chains may lead to frequent branch mis-prediction.
Pipelined architectures incur severe cost (15-20 cycles) for every
mis-predicted branch.
Compiler may optimize switch into a table lookup requiring a single
jump.
If converting to switch is not possible, put the most common clauses at
the beginning of the if chain.

Where applicable, replace deeply recursive functions by iterative ones.
eg., BFS, DFS.

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 82 / 96

Exploit instruction level parallelism

Most modern servers have 4-way superscalar cores.

Blocks of code (eg., in the body of a loop) should have enough
independent instructions.

Unrolling of loops may help in achieving this.

Inlined functions (small ones) also help, better register optimization
being the other benefit.

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 83 / 96

Loop Unrolling Example

for(int i = 0; i < 100; ++i)

{

if(i % 2 == 0)

func1(i);

else

func2(i);

func3(i);

}

for(int i = 0; i < 100; i += 2)

{

func1(i);

func3(i);

func2(i+1);

func3(i+1);

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 84 / 96

General compiler based optimizations

First and foremost job : Correct and reliable mapping of high-level
source code to machine code

Major code transformation areas

Function inlining
Constant folding
Constant propagation
Common subexpression elimination
Register variables
Branch analysis
Loop analysis
Algebraic Reduction

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 85 / 96

Function Inlining

double square (double a)

{

return a * a;

}

double parabola (double b)

{

return square(b) + 1.0;

}

double parabola (double b)

{

return b * b + 1.0;

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 86 / 96

Constant folding

double x, y, z;

y = x * (17.0/19.0);

z = x * 17.0 / 19.0;

double x, y, z;

y = x * 0.89473684210526316374;

z = x * 17.0 / 19.0;

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 87 / 96

Constant propagation

double parabola (double b)

{

return b * b + 1.0;

}

double x, y;

x = parabola(13.5);

y = x * 2.3;

double x, y;

x = 183.25;

y = 421.475;

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 88 / 96

Common subexpression elimination

double a, b, c, d;

b = (a + 6.0);

c = (a + b) * (a + b);

d = (a + b) / a;

double a, b, c, d, temp;

temp = a + a + 6.0;

c = temp * temp;

d = temp / a;

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 89 / 96

Branch Analysis : Join identical branches

double x, y, z;

bool b;

if(b)

{

y = parabola(x);

z = y + 4.0;

}

else

{

y = square(x);

z = y + 4.0;

}

...

if(b)

{

y = parabola(x);

}

else

{

y = square(x);

}

z = y + 4.0;

...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 90 / 96

Branch Analysis : Eliminate jumps

int foo (int a, bool b)

{

if(b)

a = a * 4;

else

a = a * 5;

return a;

}

int foo (int a, bool b)

{

if(b)

{

a = a * 4;

return a;

}

else

{

a = a * 5;

return a;

}

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 91 / 96

Other Compiler Optimizations

Loop unrolling

Loop invariant code motion

Instructions reordering and scheduling

Pointer elimination

...

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 92 / 96

Standard optimization options for gcc

Option Details Number of optimization flags

-O0 Default, Fast compilation and
low memory usage during compilation 0

-O1 Quick and light transformations
that preserve execution ordering 39

-O2 More optimizations with instruction
reordering and inlining 83

-O3 Heavy duty optimizations with a
lot of transformations 93

-Ofast O3 with fast, standards incompliant
floating point calculations 94

-Os Optimize for size of executable 66

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 93 / 96

Helping the compiler

Compilers can not optimize across modules

Declare objects and fixed size arrays (not very large) inside functions
that need them; Avoid dynamic memory allocation

Write programs to access data in arrays sequentially; Compilers can
not do this transformation

Use restrict keyword for pointers when the program logic rules out
pointer aliasing

ALWAYS PROFILE AFTER MAKING A SIGNIFICANT CHANGE

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 94 / 96

Pointer Aliasing

void foo (int * a, int * p)

{

for(int i = 0; i < 1000; ++i)

a[i] = *p + 2;

}

void func1 ()

{

int arr[1000];

foo(arr, &arr[10]);

}

void func2 ()

{

int arr[1000], b = 20;

foo(arr, &b);

}

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 95 / 96

Further Reading

Introduction to High Performance Computing for Scientists and
Engineers - Hager, Wellein : Chapter 1, 2, 3

http://agner.org/optimize/optimizing_cpp.pdf

Abhishek, Debdeep (IIT Kgp) Comp. Architecture September 9, 2016 96 / 96

http://agner.org/optimize/optimizing_cpp.pdf

	Motivating Example
	Memory Hierarchy
	Parallelism in Single CPU
	Dense Matrix Multiplication
	The Problem
	Analysis
	Improvement
	Better Cache utilization

	Multicore Architectures
	Appendix : Writing Efficient Serial Programs

