
12‐11‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY 

DEBDEEP MUKHOPADHYAY
AND 

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

COMMUNICATION IN 
HYPERCUBES

2



12‐11‐2015

2

3

OVERVIEW

Parallel Sum (Reduction) on Hypercubes

Broadcast

Gather and Scatter Functions

Analysis

Parallel Prefix Sum on Hypercubes

PARALLEL SUM (REDUCTION)

4

Final result is with 
processor 0

How can we 
perform the 
computation so 
that every 
processing 
element has a 
copy of the 
global sum?

By adding a 
broadcast 
stage at the 
end?



12‐11‐2015

3

BROADCAST OF SUM FROM NODE 0

5

ALTERNATIVE STRATEGY

6



12‐11‐2015

4

THE GATHERING OPERATION

There are several problems in which a set of computations must be 
performed on all pairs of objects in a set of n objects.

A straightforward sequential algorithm would require time ߠሺ݊ଶሻ

Gather operation is a parallel approach used in multiprocessors 
based on message passing.

A Gather operation is a global communication that takes a data set 
distributed among a collection of tasks and gathers it into a single 
task.
 This is different from reduction, in the sense that reduction performs the composition

of a binary reduction operation on all of the data. On the contrary, gather copies
the data from each task into an array of these items in a single task.

All gather operation: collects the data from all tasks and makes a 
copy of the entire dataset in each task.

7

A HYPERCUBE BASED GATHER
There will be 4 iterations, one for each bit 
position.

In the first iteration, all nodes whose labels are 
identical except for the most significant bit position 
will exchange data.

There are 24-1=8 pairs of such nodes in every 
iteration. Eg in 1st iteration:

0000  1000

0001  1001

0010  1010

0011  1011

0100  1100

0101  1101

0110  1110

0111  1111

In the second iteration, all pairs of nodes whose 
labels are the same except for the second MSB 
will exchange values. And so on… 8



12‐11‐2015

5

AN EXAMPLE

9

Observe that the message 
length in the channel doubles!

ANALYSIS: LATENCY AND BANDWIDTH

The all-gather communication takes logp steps, but the size of the 
messages double in every step.

In the first step, the messages have size n/p, in the second size 2n/p, 
and so on.
 In the kth step, the messages have size 2k-1n/p.

In the previous analysis of reduction, we did not consider the message 
size in the delay because all the messages were the same size (why?).

10



12‐11‐2015

6

MODELING COMMUNICATION DELAY

Amount of time required by a task to send a message has two 
components:

Latency: time to initiate the transmission

Transfer Time: Time spent sending the message through the channel. 
The longer the message, longer the transfer time.

We represent the latency by ߣ.

The channel bandwidth is represented by ߚ (data items per unit time).

To send a message with d-data items, time required is ߣ ൅ .ߚ/݀

In the kth step, the communication time is ߣ ൅ ሺ2௞ିଵ݊ሻ	/ሺ݌ߚሻ.

11

COMMUNICATION DELAY

ௗܶ ൌ ∑ ߣ ൅
ଶೖషభ௡

ఉ௣
ൌ ݌݃݋݈ߣ ൅

௡

ఉ௣
∑ 2௞௟௢௚௣ିଵ
௞ୀ଴

௟௢௚௣
௞ୀଵ

ൌ ݌݃݋݈ߣ ൅
௡

ఉ௣
2௟௢௚௣ െ 1

	 																																																ൌ ݌݃݋݈ߣ ൅
௡ሺ௣ିଵሻ

ఉ௣

12



12‐11‐2015

7

EXAMPLE OF THE SCATTER OPERATION 

The scatter operation on an eight-node hypercube.

COST OF SCATTER 

There are log p steps, in each step, the machine size halves and the 
data size halves. 

We have the time for this operation to be (where m is the message 
sent by each node), ݐ௦ ൌ ,ߣ ௪ݐ ൌ

ଵ

ఉ
,
௡

௣
ൌ ݉: 

This time holds for a linear array as well as a 2-D mesh (Read 
Introduction to Parallel Computing, Grama et. Al.) 



12‐11‐2015

8

ALL-REDUCE AND PREFIX-SUM 
OPERATIONS 

In all-reduce, each node starts with a buffer of size m and the final 
results of the operation are identical buffers of size m on each node 
that are formed by combining the original p buffers using an 
associative operator. 

Identical to all-to-one reduction followed by a one-to-all broadcast. 
This formulation is not the most efficient. Uses the pattern of all-to-all 
broadcast, instead. The only difference is that message size does not 
increase here. Time for this operation is (ts + twm) log p. 

Different from all-to-all reduction, in which p simultaneous all-to-one 
reductions take place, each with a different destination for the result. 

THE PREFIX-SUM OPERATION 

Given p numbers n0,n1,…,np-1 (one on each node), the problem is to 
compute the sums sk = ∑i

k
= 0 ni for all k between 0 and p-1 . 

Initially, nk resides on the node labeled k, and at the end of the 
procedure, the same node holds Sk. 



12‐11‐2015

9

THE PREFIX-SUM OPERATION 

Computing prefix sums on an eight-node hypercube. At each node, square brackets show 
the local prefix sum accumulated in the result buffer and parentheses enclose the 

contents of the outgoing message buffer for the next step.

THE PREFIX-SUM OPERATION 

The operation can be implemented using the all-to-all broadcast 
kernel. 

We must account for the fact that in prefix sums the node with label k
uses information from only the k-node subset whose labels are less 
than or equal to k. 

This is implemented using an additional result buffer. The content of an 
incoming message is added to the result buffer only if the message 
comes from a node with a smaller label than the recipient node. 

The contents of the outgoing message (denoted by parentheses in the 
figure) are updated with every incoming message. 



12‐11‐2015

10

THE PREFIX-SUM OPERATION 

Prefix sums on a d-dimensional hypercube.


