
31‐10‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY 

DEBDEEP MUKHOPADHYAY
AND 

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

PARALLEL ALGORITHM DESIGN 
FOR PARALLEL PLATFORMS

2



31‐10‐2015

2

3

OVERVIEW

Task and Channel 

TASK AND CHANNEL MODEL
In this model, a parallel program is viewed as a collection of tasks 
that communicate by sending messages through channels.

An algorithm’s data manipulation patterns can be represented as 
graphs: each vertex represents a data subset allocated to the same 
local memory, and each edge represents a computation involving two 
data sets.

An important goal of the parallel algorithm designer is to map the 
algorithm graph into the corresponding graph of the target machine’s 
processor organization: this mapping is also called embedding.

4



31‐10‐2015

3

TASKS AND CHANNELS

Task: Consists of an executable unit, together with its local memory 
and a collection of I/O ports.
 The local memory contains program code and private data.
 An access to a local memory is called local data access.
 The only way that a task can send copies of its local data to other tasks is through its 

output ports.
 Conversely, it can receive data from other tasks through its input ports.
 I/O port is an abstraction: it corresponds to some memory location that the task will 

use for sending or receiving data.
 Data sent or received through a channel is called non-local memory access.

A Channel is a message queue that connects one task’s output port to 
another task’s input port. A channel is reliable:
 Data values sent to the input port appear on the output port in the same order.
 No data values are lost and none are duplicated.

5

FOSTER’S DESIGN METHODOLOGY (1995)

4-stage design process:
 Partitioning: The process of dividing the computation and data into pieces.

 Communication: The process of determining how tasks will communicate with each 
other, distinguishing between local communication and global communication.

 Agglomeration: The process of grouping tasks into larger tasks to improve 
performance or simplify programming.

 Mapping: The process of assigning tasks to physical processors.

6



31‐10‐2015

4

ILLUSTRATION

7

REDUCTION: A CASE STUDY

Recap: Given a set of n numbers, a1, …,an, reduction is the process of 
computing, op(a1,a2,…,an), where op is an associative operator.
 Many examples, like addition, multiplication, maximum, minimum, etc.

Partitioning: We have studied trivial cost-optimal solutions for the 
problem, by assigning one task to each number.

Note: If a cost-optimal CREW PRAM algorithm exists, and the way the 
PRAM processors interact through shared variables maps onto the 
target architecture, a PRAM algorithm is a reasonable starting point.

But now, we also need to consider the communications.

8



31‐10‐2015

5

COMMUNICATION

There is no shared memory now in the computational model.

Our tasks must exchange data through messages.

To compute the sum of two numbers held by tasks T1 and T2, one must send its 
number to the other, which will then sum up.

When the task is finished the sum must be in a single task. This task will be called 
the root task.

A naïve solution would be for each task to send its value to the root task, which 
would then add all of them.
 Let ߣ denote the time for a task to send or receive a value from another task.
 Let ߯ denote the time for adding two numbers.

Thus, this algorithm would require time for n-1 additions in the root task, thus 
totaling (n-1)߯. Additionally, there will be (n-1) receive operations by the root 
task, thus totalling (n-1)ߣ for communication delay.

Total delay=(n-1)(ߣ ൅ ߯ሻ which worse than a sequential algorithm.

9

A BETTER COMMUNICATION PATTERN

Imagine first we replace the single root task by two co-root tasks 
(assume n is even for simplicity).

Each co-root task will be sent (n/2-1) values will then add them up. 

One of the co-roots will then communicate the result to the other, which 
will form the grand total.

Total time= ߣ ൅ ߯
௡

ଶ
െ 1 ൅ ߣ ൅ ߯ ൌ

௡

ଶ
ሺߣ ൅ ߯ሻ

10



31‐10‐2015

6

ILLUSTRATION OF THE PROCESS

11

EXTENDING THE STRATEGY

Assume n=2k for some integer k.

Let us denote the tasks as T0,T1,…,T(n-1).

The algorithm starts with the tasks Tn/2,Tn/2+1,…,Tn-1each sending its 
number to tasks T0,T1,…,Tn/2-1.

Each of them performs the sum in parallel.

Now we have exactly the same problem, but n is divided by two. 

So, we repeat the logic: The upper half of the set of tasks T0,…Tn/2-1
sends its number to the lower half, and each task in the lower half 
adds its pairs of numbers.

This sequence is repeated till n=1, at which point T0 has the total.

12



31‐10‐2015

7

PICTORIAL DESCRIPTION OF THE 
COMMUNICATION PATTERN

13

Such graphs are called as Binomial Trees.

BINOMIAL TREES

14

Recursive definition: Note that the tree of order k+1 (ie. No of nodes is 2k+1) is 
obtained by cloning the tree of order k and labeling each node by adding 2k

to its old label.



31‐10‐2015

8

DEPENDENCY OF PROCESSORS IN THE 
PRAM SUMMATION ALGORITHM 

“The processors in the PRAM summation algorithm combine values in a 
binomial tree pattern”.

15

DEPENDENCY OF PROCESSORS IN THE 
PRAM SUMMATION ALGORITHM 

“The processors in the PRAM summation algorithm combine values in a 
binomial tree pattern”.

16



31‐10‐2015

9

BINOMIAL TREES

A Binomial Tree Bn of order n൒ 0 is a rooted tree such that, if n=0, B0
is a single node called the root.

If n൒ 0, Bn is obtained by taking two disjoint copies of Bn-1 and joining 
their roots by an edge, then taking the first copy to be the root of Bn.

A binomial tree of order n has N=2n roots and 2n-1 edges.

Each node (except the root) has exactly one outgoing edge. 

The maximum distance from any node to the root of the tree is n, ie
log2N.
 This means a parallel reduction can always be performed with at most log2N 

communication steps.

The number of leaves is 2n-1.

17

PARALLEL REDUCTION OF 16 NUMBERS

18

After 1st messages are passed and summed

After 3rd messages are passed and summedAfter 2ndt messages are passed and summed

After 4th messages are passed and summed

Initial State



31‐10‐2015

10

AGGLOMERATION

It is likely the number of processors p will be much smaller than the 
number of tasks n in any realistic problem.

We agglomerate tasks also to reduce the number of communications.

We agglomerate so that the resultant graph still remains a binomial 
tree.

Thus this improves the efficiency of the implementation.

19

AGGLOMERATION OF THE BINOMIAL TREE

Assume p=2m, n=2k, m<=k

We number (label) the binomial tree, the node labels being k bits 
long, such that they can be partitioned in the following way:

All nodes whose label’s upper m bits are the same will be 
agglomerated into a single task.

For example, if p=21, then all nodes whose upper bit is 0 are in one 
task, while those whose upper bit is 1 is other.

20



31‐10‐2015

11

MAPPING/EMBEDDING
Embedding of a graph G=(V,E) into a graph G’=(V’,E’) is a function ߶
from V to V’.

Let ߶ be a function that embeds a graph G into a graph G’. The 
dilation of the embedding is defined as: ݈݀݅ ߶ ൌ
max	ሼ݀݅ݐݏሺ߶ ݑ , ߶ ݒ ሻ| ,ݑ ݒ ∈ ሽܧ where dist(a,b) is the distance 
between a and b in G’.

Dilation-1 embeddings are desirable: as communication time is 
roughly proportional to the length of the path between processors.

21

A Dilation 1 
embedding

A Dilation 3 
embedding

EMBEDDING BINOMIAL TREE TO 
HYPERCUBE

A graph G is called cubical if there is a dilation-1 embedding of G 
into a hypercube.

The problem of determining whether an arbitrary graph G is cubical 
is NP-complete.

A dilation-1 embedding of a connected graph G into a hypercube 
with n nodes exist iff it is possible to label the edges of G with the 
integers {1,2,…,n} st:
 1. Edges incident with a common vertex have different labels

 2. In every path of G at least one label appears an odd number of times.

 3. In every cycle of G no label appears an odd number of times.

22



31‐10‐2015

12

EMBEDDING BINOMIAL TREE TO 
HYPERCUBE

A binomial tree of height n can be embedded in a hypercube of 
dimension n such that the dilation is 1.

23

AFTER THE EMBEDDING

24



31‐10‐2015

13

ANALYSIS

25

Run Time depends on 2 parameters: ߯ and λ

Performing the sequential sum of (n/P) numbers assigned to each 

task=
௡

௣
െ 1 ߯

The parallel reduction takes log p steps.

Each process must receive a value and then add to its partial sum.

Thus each step takes ߣ ൅ ߯ time.

Thus total time, ܶ ൌ
௡

௣
െ 1 ߯ ൅ ߣ ൅ ߯ log ݌


