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OVERVIEW

Tree contraction

Evaluation of arithmetic expressions
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PROBLEMS IN PARALLEL 
COMPUTATIONS OF TREE 
FUNCTIONS

Computations of tree functions are important 
for designing many algorithms for trees and 
graphs.

Some of these computations include preorder, 
postorder, inorder numbering of the nodes of 
a tree, number of descendants of each vertex, 
level of each vertex etc.
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PROBLEMS IN PARALLEL 
COMPUTATIONS OF TREE 
FUNCTIONS
Most sequential algorithms for these 
problems use depth-first search for 
solving these problems.

However, depth-first search seems to be 
inherently sequential in some sense.
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PARALLEL DEPTH-FIRST 
SEARCH

It is difficult to do depth-first search in parallel.

We cannot assign depth-first numbering to the 
node n unless we have assigned depth-first 
numbering to all the nodes in the subtree A.
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PARALLEL DEPTH-FIRST 
SEARCH

There is a definite order of visiting the nodes in 
depth-first search.

We can introduce additional edges to the tree to 
get this order.

The Euler tour technique converts a tree into a 
list by adding additional edges.
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PARALLEL DEPTH-FIRST 
SEARCH

The red (or, magenta ) arrows are followed when 
we visit a node for the first (or, second) time.

If the tree has n nodes, we can construct a list with 
2n - 2 nodes, where each arrow (directed edge)  is a 
node of the list.
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EULER TOUR 
TECHNIQUE

For a node v T, p(v) is the parent of v.

Each red node in the list represents an edge of the 
nature < p(v) , v >.

We can determine the preorder numbering of a 
node of the tree by counting the red nodes in the list.
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EULER TOUR 
TECHNIQUE
Let T = (V, E) be a given tree and let T’ = (V, E’ ) be 
a directed graph obtained from T.

Each edge (u, v)  E is replaced by two edges < u, 
v > and < v, u >.

Both the indegree and outdegree of an internal 
node of the tree are now same.

The indegree and outdegree of a leaf is 1 each.

Hence T’ is an Eulerian graph: ie. it has a directed 
circuit that traverses each arc exactly once.
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EULER TOUR 
TECHNIQUE

An Euler circuit of a graph is an edge-disjoint
circuit which traverses all the nodes.

A graph permits an Euler circuit if and only if 
each vertex has equal indegree and 
outdegree.

An Euler circuit can be used for optimal 
parallel computation of many tree functions.

To construct an Euler circuit, we have to 
specify the successor edge for each edge.
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CONSTRUCTING AN 
EULER TOUR

Each edge on an Euler circuit has a unique 
successor edge.

For each vertex v V we fix an ordering of the 
vertices adjacent to v.

If d is the degree of vertex v, the vertices 
adjacent to v are:

adj(v) = < u0, u1, …, ud -1 >

The successor of edge < ui, v > is:

s(< ui, v >) = < v, u(i + 1) mod d >, 0  i  (d - 1)
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CONSTRUCTING AN 
EULER TOUR

Successor function table 

The resulting Eulerian 
Circuit
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CORRECTNESS OF 
EULER TOUR

Consider the graph T’ = (V, E’ ) , where E’ is 
obtained by replacing each e E by two directed 
edges of opposite directions.

Lemma: The successor function s defines only 
one cycle and not a set of edge-disjoint cycles in 
T’.

Proof: We have already shown that the graph is 
Eulerian.

We prove the lemma through induction.
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CORRECTNESS OF 
EULER TOUR

basis: When the tree has 2 nodes, there is 
only one edge and one cycle with two 
edges.

Suppose, the claim is true for n nodes. We 
should show that it is true when there are     
n + 1 nodes.

16

CORRECTNESS OF 
EULER TOUR

We can introduce an extra node by introducing a 
leaf to an existing tree, like the leaf v.

Initially, adj(u) = <…, v’, v’’, …> . Hence,               

s(< v’, u >) = < u, v’’ >.
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CORRECTNESS OF 
EULER TOUR

After the introduction of v, adj(u) = <…, v’, v, v’’, …>

s(< v’, u >) = < u, v > and

s(< v, u >) = < u, v’’ >

Hence, there is only one cycle after v is introduced.

18

CONSTRUCTION OF EULER 
TOUR IN PARALLEL
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CONSTRUCTION OF EULER 
TOUR IN PARALLEL

We assume that the tree is given as a set of 
adjacency lists for the nodes. The adjacency list 
L[v] for v is given in an array.

Consider a node v and a node ui adjacent to v.

We need:
 The successor < v, u(i + 1) mod d > for < ui, v >. This is done 
by making the list circular.
 < ui, v >. This is done by keeping a direct pointer from ui
in L[v] to v in L[ui].

20

CONSTRUCTION OF EULER 
TOUR IN PARALLEL

We can construct an Euler tour in O(1) time 
using O(n) processors.

One processor is assigned to each node of the 
adjacency list.

There is no need of concurrent reading, hence 
the EREW PRAM model is sufficient.
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ROOTING A TREE

For doing any tree computation, we need to 
know the parent p(v) for each node v.

Hence, we need to root the tree at a vertex r.

We first construct an Euler tour and for the 
vertex r, set s(< ud -1, r >) = 0.

ud -1 is the last vertex adjacent to r.

In other words, we break the Euler tour at r.

22

ROOTING A TREE
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ROOTING A TREE

Perform a parallel 
prefix sum with a 
weight of one 
assigned to each arc.

24

ROOTING A TREE

Input: The Euler tour of a tree and a 
special vertex r.

Output: For each vertex v  r, the parent 
p(v) of v in the tree rooted at r.
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ROOTING A TREE

begin

1. Set s(< u, r >) = 0, where u is the last vertex in 
the adjacency list of r.

2. Assign a weight 1 to each edge of the list 
and compute parallel prefix.

3. For each edge < x, y >, set x = p(y) whenever 
the prefix sum of < x, y > is smaller than the 
prefix sum of < y, x >.

end
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ROOTING A TREE
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POSTORDER
NUMBERING

Input: A rooted tree with root r, and the 
corresponding Euler path defined by the 
function s.

Output: For each vertex v, the postorder
number post(v) of each vertex v.
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POSTORDER
NUMBERING

The Euler path (EP) can be used to solve this.
The EP visits each vertex several times, the 
first time by the arc <p(v),v>, and the last 
time by the arc <v,p(v)>, after visiting all the 
descendants of v.
Thus ordered sublist of all vertices obtained 
by retention of the last occurrence of each 
vertex defines precisely the postorder
traversal of the vertices of T.
How can we do that?
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POSTORDER
NUMBERING

begin

1. For each vertex v≠r, assign the weights 
w(<v,p(v)>)=1, and w(<p(v),v>)=0.

2. Perform parallel prefix sum on the list of arcs 
defined by s.

3. For each vertex v≠r, set post(v) equal to the 
prefix sum of <v,p(v)>. For v=r, set post(r)=n, 
where n is the number of vertices in the 
given tree.

end

29

30

COMPUTATION OF TREE 
FUNCTIONS

Given a tree T, for many tree computations:
We first construct the Euler tour of T
Then we root the tree at a vertex

We can compute:
The postorder number of each vertex
The preorder number of each vertex
The inorder number of each vertex
The level of each vertex
The number of descendants of each vertex.



05‐09‐2015

16

31

TREE CONTRACTION

Some tree computations cannot be solved 
efficiently with the Euler tour technique alone.

An important problem is evaluation of an 
arithmetic expression given as a binary tree.

32

TREE CONTRACTION

Each leaf holds a constant and each internal node 
holds an arithmetic operator like +,.

The goal is to compute the value of the expression at 
the root.

The tree contraction technique is a systematic way 
of shrinking a tree into a single vertex.

We successively apply the operation of merging a 
leaf with its parent or merging a degree-2 vertex with 
its parent.
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THE RAKE OPERATION

Let T = (V, E) be a rooted binary tree and for 
each vertex v, p(v) is its parent.

sib(v) is the child of p(v). We consider only 
binary trees.

In the rake operation for a leaf u such that    
p(u)  r.
Remove u and p(u) from T, and
Connect sib(u) to p(p(u)).

34

THE RAKE OPERATION

In our tree contraction algorithm, we apply the rake 
operation repeatedly to reduce the size of the binary 
tree.

We need to apply rake to many leaves in parallel in 
order to achieve a fast running time.
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THE RAKE OPERATION

But we cannot apply rake operation to nodes 
whose parents are adjacent on the tree.

For example, rake operation cannot be 
applied to nodes 1 and 8 in parallel.

We need to apply the rake operation to non-
consecutive leaves as they appear from left to 
right.

36

THE RAKE OPERATION

We first label the leaves consecutively from left to 
right.

In an Euler path for a rooted tree, the leaves appear 
from left to right.

We can assign a weight 1 to each edge of the kind   
(v, p(v)) where v is a leaf.

We exclude the leftmost and the rightmost leaves. 
These two leaves will be the two children of the root 
when the tree is contracted to a three-node tree.

We do a prefix sum on the resulting list and the 
leaves are numbered from left to right.
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THE RAKE OPERATION

We now store all the n leaves in an array A 
(except the left most and right most leaves).

Aodd is the subarray consisting of the odd-
indexed elements of A.

Aeven is the subarray consisting of the even-
indexed elements of A.

We can create the arrays Aodd and Aeven in 
O(1) time and O(n) work.

38

TREE CONTRACTION 
ALGORITHM

begin

for iterations do

1. Apply the rake operation in parallel to all the 
elements of Aodd that are left children

2. Apply the rake operation in parallel to the 
rest of the elements in Aodd.

3. Set A := Aeven.

end
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TREE CONTRACTION 
ALGORITHM

40

CORRECTNESS OF TREE 
CONTRACTION

Whenever the rake operation is applied in parallel to 
several leaves, the parents of any two such leaves 
are not adjacent.

The number of leaves reduces by half after each 
iteration of the loop. Hence the tree is contracted in 
O(log n) time.

Euler tour takes O(n) work.

The total number of operations for all the iterations 
of the loop is:
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EVALUATION OF 
ARITHMETIC 
EXPRESSIONS

If we evaluate an expression tree bottom-up, it will 
take O(n) time for a long and skinny tree.

Hence we apply tree contraction.
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EVALUATION OF 
ARITHMETIC 
EXPRESSIONS
We do not completely evaluate each internal 
node. We evaluate the internal nodes partially.

For each internal node v, we associate a label 
(av, bv). av and bv are constants.

The value of the expression at node is:

(av X + bv), where X is an unknown value for 
the expression of the subtree rooted at v, and
+ is the operator stored in node v.
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KEEPING AN INVARIANT

Invariant:

Let u be an internal node which holds the 
operation  , .

Let v and w are the children of u with 
labels (av, bv) and (aw, bw).

Then the value at u is:

val(u) = (avval(v) + bv)  (awval(w) + bw)

44

KEEPING AN INVARIANT
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APPLYING THE RAKE 
OPERATION

The value at node u is:

val(u) = (avcv + bv)  (aw X + bw)

X is the unknown value at node w.
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APPLYING THE RAKE 
OPERATION

The contribution of val(u) to the value of 
node p(u) is:

au  val(u) + bu = au[(avcv + bv)  (aw X + bw)] + bu

We can adjust the labels of node w to     
(a’w , b’w)

a’w = au(avcv + bv) aw

b’w = au(avcv + bv) bw + bu
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COMPLEXITY OF 
EXPRESSION EVALUATION

The correctness of the expression evaluation 
depends on correctly maintaining the invariants.

We start with a label (1, 0) for each leaf and 
correctly maintain the invariant at each rake 
operation.

We have already proved the correctness of the 
rake operation.

Hence, evaluation of an expression given as a 
binary tree takes O(n) work and O(log n) time.
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE


