
05‐09‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY

DEBDEEP MUKHOPADHYAY
AND

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

THE EULER TOUR TECHNIQUE:
EVALUATION OF TREE FUNCTIONS

2

05‐09‐2015

2

3

OVERVIEW

Tree contraction

Evaluation of arithmetic expressions

4

PROBLEMS IN PARALLEL
COMPUTATIONS OF TREE
FUNCTIONS

Computations of tree functions are important
for designing many algorithms for trees and
graphs.

Some of these computations include preorder,
postorder, inorder numbering of the nodes of
a tree, number of descendants of each vertex,
level of each vertex etc.

05‐09‐2015

3

5

PROBLEMS IN PARALLEL
COMPUTATIONS OF TREE
FUNCTIONS
Most sequential algorithms for these
problems use depth-first search for
solving these problems.

However, depth-first search seems to be
inherently sequential in some sense.

6

PARALLEL DEPTH-FIRST
SEARCH

It is difficult to do depth-first search in parallel.

We cannot assign depth-first numbering to the
node n unless we have assigned depth-first
numbering to all the nodes in the subtree A.

05‐09‐2015

4

7

PARALLEL DEPTH-FIRST
SEARCH

There is a definite order of visiting the nodes in
depth-first search.

We can introduce additional edges to the tree to
get this order.

The Euler tour technique converts a tree into a
list by adding additional edges.

8

PARALLEL DEPTH-FIRST
SEARCH

The red (or, magenta) arrows are followed when
we visit a node for the first (or, second) time.

If the tree has n nodes, we can construct a list with
2n - 2 nodes, where each arrow (directed edge) is a
node of the list.

05‐09‐2015

5

9

EULER TOUR
TECHNIQUE

For a node v T, p(v) is the parent of v.

Each red node in the list represents an edge of the
nature < p(v) , v >.

We can determine the preorder numbering of a
node of the tree by counting the red nodes in the list.

10

EULER TOUR
TECHNIQUE
Let T = (V, E) be a given tree and let T’ = (V, E’) be
a directed graph obtained from T.

Each edge (u, v) E is replaced by two edges < u,
v > and < v, u >.

Both the indegree and outdegree of an internal
node of the tree are now same.

The indegree and outdegree of a leaf is 1 each.

Hence T’ is an Eulerian graph: ie. it has a directed
circuit that traverses each arc exactly once.

05‐09‐2015

6

11

EULER TOUR
TECHNIQUE

An Euler circuit of a graph is an edge-disjoint
circuit which traverses all the nodes.

A graph permits an Euler circuit if and only if
each vertex has equal indegree and
outdegree.

An Euler circuit can be used for optimal
parallel computation of many tree functions.

To construct an Euler circuit, we have to
specify the successor edge for each edge.

12

CONSTRUCTING AN
EULER TOUR

Each edge on an Euler circuit has a unique
successor edge.

For each vertex v V we fix an ordering of the
vertices adjacent to v.

If d is the degree of vertex v, the vertices
adjacent to v are:

adj(v) = < u0, u1, …, ud -1 >

The successor of edge < ui, v > is:

s(< ui, v >) = < v, u(i + 1) mod d >, 0 i (d - 1)

05‐09‐2015

7

13

CONSTRUCTING AN
EULER TOUR

Successor function table

The resulting Eulerian
Circuit

14

CORRECTNESS OF
EULER TOUR

Consider the graph T’ = (V, E’) , where E’ is
obtained by replacing each e E by two directed
edges of opposite directions.

Lemma: The successor function s defines only
one cycle and not a set of edge-disjoint cycles in
T’.

Proof: We have already shown that the graph is
Eulerian.

We prove the lemma through induction.

05‐09‐2015

8

15

CORRECTNESS OF
EULER TOUR

basis: When the tree has 2 nodes, there is
only one edge and one cycle with two
edges.

Suppose, the claim is true for n nodes. We
should show that it is true when there are
n + 1 nodes.

16

CORRECTNESS OF
EULER TOUR

We can introduce an extra node by introducing a
leaf to an existing tree, like the leaf v.

Initially, adj(u) = <…, v’, v’’, …> . Hence,

s(< v’, u >) = < u, v’’ >.

05‐09‐2015

9

17

CORRECTNESS OF
EULER TOUR

After the introduction of v, adj(u) = <…, v’, v, v’’, …>

s(< v’, u >) = < u, v > and

s(< v, u >) = < u, v’’ >

Hence, there is only one cycle after v is introduced.

18

CONSTRUCTION OF EULER
TOUR IN PARALLEL

05‐09‐2015

10

19

CONSTRUCTION OF EULER
TOUR IN PARALLEL

We assume that the tree is given as a set of
adjacency lists for the nodes. The adjacency list
L[v] for v is given in an array.

Consider a node v and a node ui adjacent to v.

We need:
 The successor < v, u(i + 1) mod d > for < ui, v >. This is done
by making the list circular.
 < ui, v >. This is done by keeping a direct pointer from ui
in L[v] to v in L[ui].

20

CONSTRUCTION OF EULER
TOUR IN PARALLEL

We can construct an Euler tour in O(1) time
using O(n) processors.

One processor is assigned to each node of the
adjacency list.

There is no need of concurrent reading, hence
the EREW PRAM model is sufficient.

05‐09‐2015

11

21

ROOTING A TREE

For doing any tree computation, we need to
know the parent p(v) for each node v.

Hence, we need to root the tree at a vertex r.

We first construct an Euler tour and for the
vertex r, set s(< ud -1, r >) = 0.

ud -1 is the last vertex adjacent to r.

In other words, we break the Euler tour at r.

22

ROOTING A TREE

05‐09‐2015

12

23

ROOTING A TREE

Perform a parallel
prefix sum with a
weight of one
assigned to each arc.

24

ROOTING A TREE

Input: The Euler tour of a tree and a
special vertex r.

Output: For each vertex v r, the parent
p(v) of v in the tree rooted at r.

05‐09‐2015

13

25

ROOTING A TREE

begin

1. Set s(< u, r >) = 0, where u is the last vertex in
the adjacency list of r.

2. Assign a weight 1 to each edge of the list
and compute parallel prefix.

3. For each edge < x, y >, set x = p(y) whenever
the prefix sum of < x, y > is smaller than the
prefix sum of < y, x >.

end

26

ROOTING A TREE

05‐09‐2015

14

27

POSTORDER
NUMBERING

Input: A rooted tree with root r, and the
corresponding Euler path defined by the
function s.

Output: For each vertex v, the postorder
number post(v) of each vertex v.

28

POSTORDER
NUMBERING

The Euler path (EP) can be used to solve this.
The EP visits each vertex several times, the
first time by the arc <p(v),v>, and the last
time by the arc <v,p(v)>, after visiting all the
descendants of v.
Thus ordered sublist of all vertices obtained
by retention of the last occurrence of each
vertex defines precisely the postorder
traversal of the vertices of T.
How can we do that?

05‐09‐2015

15

POSTORDER
NUMBERING

begin

1. For each vertex v≠r, assign the weights
w(<v,p(v)>)=1, and w(<p(v),v>)=0.

2. Perform parallel prefix sum on the list of arcs
defined by s.

3. For each vertex v≠r, set post(v) equal to the
prefix sum of <v,p(v)>. For v=r, set post(r)=n,
where n is the number of vertices in the
given tree.

end

29

30

COMPUTATION OF TREE
FUNCTIONS

Given a tree T, for many tree computations:
We first construct the Euler tour of T
Then we root the tree at a vertex

We can compute:
The postorder number of each vertex
The preorder number of each vertex
The inorder number of each vertex
The level of each vertex
The number of descendants of each vertex.

05‐09‐2015

16

31

TREE CONTRACTION

Some tree computations cannot be solved
efficiently with the Euler tour technique alone.

An important problem is evaluation of an
arithmetic expression given as a binary tree.

32

TREE CONTRACTION

Each leaf holds a constant and each internal node
holds an arithmetic operator like +,.

The goal is to compute the value of the expression at
the root.

The tree contraction technique is a systematic way
of shrinking a tree into a single vertex.

We successively apply the operation of merging a
leaf with its parent or merging a degree-2 vertex with
its parent.

05‐09‐2015

17

33

THE RAKE OPERATION

Let T = (V, E) be a rooted binary tree and for
each vertex v, p(v) is its parent.

sib(v) is the child of p(v). We consider only
binary trees.

In the rake operation for a leaf u such that
p(u) r.
Remove u and p(u) from T, and
Connect sib(u) to p(p(u)).

34

THE RAKE OPERATION

In our tree contraction algorithm, we apply the rake
operation repeatedly to reduce the size of the binary
tree.

We need to apply rake to many leaves in parallel in
order to achieve a fast running time.

05‐09‐2015

18

35

THE RAKE OPERATION

But we cannot apply rake operation to nodes
whose parents are adjacent on the tree.

For example, rake operation cannot be
applied to nodes 1 and 8 in parallel.

We need to apply the rake operation to non-
consecutive leaves as they appear from left to
right.

36

THE RAKE OPERATION

We first label the leaves consecutively from left to
right.

In an Euler path for a rooted tree, the leaves appear
from left to right.

We can assign a weight 1 to each edge of the kind
(v, p(v)) where v is a leaf.

We exclude the leftmost and the rightmost leaves.
These two leaves will be the two children of the root
when the tree is contracted to a three-node tree.

We do a prefix sum on the resulting list and the
leaves are numbered from left to right.

05‐09‐2015

19

37

THE RAKE OPERATION

We now store all the n leaves in an array A
(except the left most and right most leaves).

Aodd is the subarray consisting of the odd-
indexed elements of A.

Aeven is the subarray consisting of the even-
indexed elements of A.

We can create the arrays Aodd and Aeven in
O(1) time and O(n) work.

38

TREE CONTRACTION
ALGORITHM

begin

for iterations do

1. Apply the rake operation in parallel to all the
elements of Aodd that are left children

2. Apply the rake operation in parallel to the
rest of the elements in Aodd.

3. Set A := Aeven.

end

05‐09‐2015

20

39

TREE CONTRACTION
ALGORITHM

40

CORRECTNESS OF TREE
CONTRACTION

Whenever the rake operation is applied in parallel to
several leaves, the parents of any two such leaves
are not adjacent.

The number of leaves reduces by half after each
iteration of the loop. Hence the tree is contracted in
O(log n) time.

Euler tour takes O(n) work.

The total number of operations for all the iterations
of the loop is:

05‐09‐2015

21

41

EVALUATION OF
ARITHMETIC
EXPRESSIONS

If we evaluate an expression tree bottom-up, it will
take O(n) time for a long and skinny tree.

Hence we apply tree contraction.

42

EVALUATION OF
ARITHMETIC
EXPRESSIONS
We do not completely evaluate each internal
node. We evaluate the internal nodes partially.

For each internal node v, we associate a label
(av, bv). av and bv are constants.

The value of the expression at node is:

(av X + bv), where X is an unknown value for
the expression of the subtree rooted at v, and
+ is the operator stored in node v.

05‐09‐2015

22

43

KEEPING AN INVARIANT

Invariant:

Let u be an internal node which holds the
operation , .

Let v and w are the children of u with
labels (av, bv) and (aw, bw).

Then the value at u is:

val(u) = (avval(v) + bv) (awval(w) + bw)

44

KEEPING AN INVARIANT

05‐09‐2015

23

45

APPLYING THE RAKE
OPERATION

The value at node u is:

val(u) = (avcv + bv) (aw X + bw)

X is the unknown value at node w.

46

APPLYING THE RAKE
OPERATION

The contribution of val(u) to the value of
node p(u) is:

au val(u) + bu = au[(avcv + bv) (aw X + bw)] + bu

We can adjust the labels of node w to
(a’w , b’w)

a’w = au(avcv + bv) aw

b’w = au(avcv + bv) bw + bu

05‐09‐2015

24

47

COMPLEXITY OF
EXPRESSION EVALUATION

The correctness of the expression evaluation
depends on correctly maintaining the invariants.

We start with a label (1, 0) for each leaf and
correctly maintain the invariant at each rake
operation.

We have already proved the correctness of the
rake operation.

Hence, evaluation of an expression given as a
binary tree takes O(n) work and O(log n) time.

48

AN EXAMPLE

05‐09‐2015

25

49

AN EXAMPLE

50

AN EXAMPLE

