
PARALLEL AND DISTRIBUTED ALGORITHMS
BY 

DEBDEEP MUKHOPADHYAY
AND 

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm



PRAM ALGORITHMS: 
LIST RANKING AND COLORING

2



THE LIST RANKING PROBLEM

Given a linked list L of n nodes whose order is specified by an array S 
or Succ) such that S(i) contains a pointer to the node following i on L, 
for 1≤i≤n

We assume S(i)=0 when i is the end of the list. 

The List Ranking problem is to determine the distance of each node i
from the end of the list.

The List ranking problem is one of the most elementary problems in list 
processing whose sequential complexity is trivially linear.

The pointer jumping (PJ) technique can be used to derive a parallel 
algorithm for the list ranking problem.

The corresponding running time is O(log n), and the corresponding 
total number of operations is O(n log n) => Non-optimal solution.

3



OPTIMAL LIST RANKING

PJ can be made optimal if we can somehow reduce the size of the list 
to O(n/log n) nodes using a linear number of operations.

The standard approach to achieve optimality would be:

1. Partition the input list into approximately n/log n blocks, each 
containing O(log n) nodes.

2. Rank each node within each block by using an optimal sequential 
algorithm, called the preliminary rank.

3. Combine the preliminary ranks using an O(log n) time parallel 
algorithm. 

Unfortunately each block can have O(log n) sublists due to PJ, in which 
case the size of the input list to the O(log n) time parallel algorithm 
would not have been reduced to O(n/log n) nodes. 

4



ALTERNATIVE STRATEGY: SYMMETRY BREAKING 
AND DETERMINISTIC COIN TOSSING (COLE, 
VISHKIN’86)
Step 1: Shrink the linked list L to L’ until only O(n/log n) nodes remain.

Step 2: Apply the pointer jumping technique on the short list L’. 
 Requires O(lg n) time, with cost O(n)

Step 3: Restore the original list and rank all the nodes removed in step 
1.

Step 1 is the main difficult step, which needs to be performed in   
O(log n) time with a cost of O(n)

5



INDEPENDENT SETS

The method for shrinking L consists of removing a selected set of nodes 
from L and updating the intermediate R values of the remaining 
nodes. (R(i) is the rank or distance of node i from the end of the list).

The key to a fast parallel algorithm lies in using an Independent Set of 
nodes which can be deleted in parallel.

A set I of nodes is independent if, whenever iϵI, if	s i ് ݅, ݏ ݅ ∉ .ܫ

We can remove each node iϵI, by adjusting the successor pointer of 
the predecessor of i. Since, I independent this process can be 
applied concurrently to all the nodes in I.

6



DELETION OF THE INDEPENDENT NODES

	 ܫ ⊂ ሻܵܫሺݐ݁ݏ	ݐ݊݁݀݊݁݁݀݊݅	݊ܽ	ݏ݅	ܮ ⇒ ∀݅ ∈ 	݀݁ݐ݈݁݁݀	ܾ݁	݊ܽܿ	ܫ

	 	.݈݈݈݁ܽݎܽ	݊݅	ܮ	݉ݎ݂

Proof: If ܫ ⊂ 	ܮ is an IS, then ∀݅ ∈ ,ܫ ܲ ݅ ∈ .ܫ

7



IDENTIFYING THE INDEPENDENT SET

We can handle the problem of finding an independent set by coloring 
the nodes of the list L.

Recall that a k-coloring of L is a mapping from the set of nodes in L 
into {0,1,…,k-1} such that no adjacent vertices are assigned the same 
color.

A node u is a local minimum (or maximum) wrt. this coloring if the 
color of u is smaller (larger) than the colors of its predecessor and 
successor.

8



A RESULT

Let k≥2 be a constant and consider any k-coloring c of elements x of L, 
ie. ∀ݔ ∈ ,ܮ 1  ܿ ݔ  ݇ and ܿሺܲ݀݁ݎ ݔ ് ܿ ݔ ് ܿሺܵܿܿݑ ݔ ሻ. Then 
the set of local minima of coloring c is an IS of size Ω(n/k) and there is a 
work‐optimal parallel algorithm to determine the local minima.

Proof: Let u and v be 2 local minima of c such that no other local minima 
exists between them.

Then u and v cannot be adjacent.

Colors of elements between u and v must form a bitonic sequence of at 
most (k‐2)+1+(k‐2)=2k‐3 colors.

Thus,  ܫ  
ଶିଶ

ൌ Ωሺ

ሻ. 

Given a coloring, determining its local minima is trivial on EREW PRAM 
just by inspecting predecessor’s color and successor’s color for all elements 
in parallel.

9



REDUCING TO 3-COLORING

A large IS can be obtained by 3-coloring the list.

For a 3-coloring ܫ  
ସ
.

In order to reduce n-element list L to L’ with n/(log n) elements, we 
must remove ISs based on local minima of 3-coloring repeatedly.  

10



BOUND ON NUMBER OF ITERATIONS

	 Οሺlog ሻ݈݊݃ iterations consisting in removing ISs of local minima of 3-
colorings are needed to reduce L to L’ with ܮᇱ  ݊/ log ݊.

Proof: Let m be the number of iterations required to reduce L to L’. 

Let Lk be the length of L after k iterations and Ik be the IS of local 
minima of a 3-coloring of Lk.

Then |Ik|≥|Lk|/4, and |Lk+1|=|Lk|-|Ik|≤(3/4)|Lk| . 

By recursive definition for |Lk| and using |L|=|L0|=n, we have     
|Lk| ≤(3/4)kn. 

Since, |Lm|≤n/log n, m must fulfil condition (3/4)mn ≤n/log n, which is 
equivalent to ݉  logସ/ଷ ݈݊݃ ൌ


୪୭ ర

య
ൌ 	.݈݊݃݃2.4݈

11



SOLVING THE 3-COLORING PROBLEM

The problem has reduced to the problem of 3-coloring of a linked list.
 Sequentially this is trivial. We just need to traverse the list, assigning alternate colors 0 and 

1 (add a color 2 in case of a cycle)
 To do it in parallel we need to break the symmetry of the nodes assigned to every 

processor

Due to the fact that the indices are random (ie. Succ does not have any 
locality), nodes in a sublist of size log n assigned to each processor looks 
alike. 

We need to partition them into classes such that all nodes can be 
assigned the same color in parallel.

We describe an elegant deterministic method called Deterministic Coin 
Tossing (DCT) to break the symmetry.
 Based on the idea that the only nonsymmetry among elements of the list is their unique 

identification numbering.
 The identifications are used as an initial n-coloring and it is then transformed into a 3-

coloring.

12



A BASIC PARALLEL COLORING SCHEME 
USING DCT FOR A DIRECTED CYCLE
Assume the arcs of G are specified by an array S st:
 If (i,j)ϵE, we have s(i)=j, for 1≤i,j≤n
 We start with an initial coloring of c(i)=I for all i.
 The binary expansion of the color c is ct‐1…ck…c1c0
 The kth LSB is ck.

Parallel Reduction of the number of initial colors:

For 1≤i≤n, in parallel we:

1. Set k to the LSB in which c(i) and c(S(i)) differ.

2. Set c’(i)=2k+c(i)k
Note if initial coloring is a t‐bit value, max value of c’=2(t‐1)+1=2t‐1, 
which can be represented by a  log	ሺݐሻ  1. Thus there is an 
exponential reduction in the number of colors!

Is the coloring correct?

13



CORRECTNESS

As the starting coloring is correct such a differing k must exist.

Suppose by contradiction the derived coloring is incorrect.

Thus for an edge (i,j)ϵE, c’(i)=c’(j).
 Thus, 2k+c(i)k=2l+c(j)l.
 Note this can be only possible if k=l, but then c(i)k=c(j)k, which defies the definition 
of k.
 Hence, c’(i)≠c’(j), for any (i,j)ϵE.

Assuming that the LSB in which two binary numbers differ can be 
found on O(1) time, when the binary values are of size O(logn) bits, 
the algorithm is a constant time algorithm.

How do you convert this to a 3‐coloring algorithm?

14



RECURSIVE APPLICATION OF THE 
ALGORITHM
The algorithm can be recursively applied reducing the number of colors 
till t>3.
 Note for t=3 bits, the max color value is 2.3-1=5, which also requires 3 bits.
 Thus the number of colors is 0≤c’i)≤5. 

Iterations of DCT can reduce the number of colors of a coloring only to 6.

We next estimate the number of iterations required to reach this stage.
 Let log(i)(x)=log(log(i-1)(x)), log(1)(x)=log(x). 
 Let log*x=min{i|log(i)(x)≤1}
 The function log*x is an extremely slowly growing function that is bounded by 5 for all x
≤265536.

Starting with the initial coloring c(i)=i, for 1 ≤i ≤n, then each iteration 
reduces the number of colors: after 1st iteration O(log n), after 2nd

O(log2(n)).

Thus number of colors will be reduced to 6 after O(log*n) iterations.

15



THE FINAL CUT!

We apply a further recolor.

The additional recoloring procedure consists of 3 iterations, each of 
which handles vertices of a specific color.

For each color which lies between 3 and 5, ie. 3 ≤l ≤5, we recolor all 
vertices i with color l with the smallest possible color from {0,1,2} (ie. 
Smallest color different from predecessor and successor).

Each iteration takes O(1) time with n processors.
 Note when two nodes with color 3 is handled, they are never adjacent.
 Thus the correctness is ensured.

16



EXAMPLE

17

13
9

1

3

7

14

2
15

4
5

6

8

10

11

12

v c k c'

1 0001 1 2

3 0011 2 4

7 0111 0 1

14 1110 2 5

2 0010 0 0

15 1111 0 1

4 0100 0 0

5 0101 0 1

6 0110 1 3

8 1000 1 2

10 1010 0 0

11 1011 0 1

12 1100 0 0

9 1001 2 4

13 1101 2 5

Note now there are 6 colors: 0-5



EXAMPLE

18

13
9

1

3

7

14

2
15

4
5

6

8

10

11

12

v c k c'

1 0001 1 2

3 0011 2 4

7 0111 0 1

14 1110 2 5

2 0010 0 0

15 1111 0 1

4 0100 0 0

5 0101 0 1

6 0110 1 3

8 1000 1 2

10 1010 0 0

11 1011 0 1

12 1100 0 0

9 1001 2 4

13 1101 2 5

Note now there are 3 colors: 0-2

0

0

1

2

0



COMPLEXITY

Using DCT, we can construct a 3-coloring on p processors in time 
T(n,p)=O(nlog*n/p) with C(n,p)=O(nlog*n).

When p=n, T=O(log*n), with C=O(nlog*n).

Optimal Algorithm for 3-coloring:

Apply the 3-coloring once.

For the O(log n) remaining colors we apply the re-coloring scheme.

We can 3-color in time O(log n) time, with a cost of O(n).

19



LIST RANKING USING COLORING

1. Set n0=n, k=0

2. While nk>n/log n do

2.1 Set k=k+1

2.2 Color the list with 3 colors, and identify the set I 
of local minima

2.3 Remove the nodes in I, and store the 
appropriate information regarding the removed 
nodes (discuss later)

2.4 Let nk be the size of the remaining list. 
Compact list into consecutive memory locations.

3. Apply PJ to the resulting list.

4. Restore the original list and rank all the removed 
nodes by reversing the process in Step 2

20

Note step 2 needs to be 
repeated O(loglogn) 
times. 2.2 takes O(log n) 
time using O(n) 
operations. 

We need to discuss Steps 
2.3.



REMOVING NODES OF AN INDEPENDENT 
SET
Input: 1) Arrays S and P of length n representing, respectively, the successor and 
the predecessor relations of a linked list, 2) an independent set I of nodes, 3) a 
value R(i) for each node i.

Output: The list obtained after removal of all the nodes in I with the updated R 
values.

Begin

1. Assign consecutive serial numbers N(i) to the elements of I, where 
1≤N(i)≤|I|=n’.

2. for all iϵI in parallel 

U(N(i))=(i,S(i),R(i))

R(P(i))=R(P(i))+R(i)

P(S(i))=P(i)

S(P(i))=S(i)

21



CORRECTNESS, COMPLEXITY, 
RESTORATION
Given a linked list L of size n and an independent set I, the previous 
Algorithm correctly removes the nodes of I and updates the R values in 
O(log n) time using O(n) operations.

Proof: Correctness follows from the fact that no two nodes of I are 
adjacent. 

As for the running time, step 1 takes O(log n) time using O(n) 
operations by a pre-fix sum computation on the nodes of L, such that a 
weight of 1 is assigned to each node in I, and a weight of 0 is 
assigned to each of the remaining nodes.

Step 2 can be executed in O(1) time, using O(n) operations.

Restoration: Once the ranks of the nodes in the contracted list are 
determined, it is easy to obtain the ranks of the deleted nodes and to 
restore the original list using the information stored in the U array.

22



EXERCISE

23

6 4 1 3 7 2 8 5

[1] [1] [1] [1] [1] [1] [1] [0]



THE EULER TOUR TECHNIQUE:
EVALUATION OF TREE FUNCTIONS

24



25

OVERVIEW

The Euler tour technique

Computation of different tree functions

Tree contraction

Evaluation of arithmetic expressions



26

PROBLEMS IN PARALLEL 
COMPUTATIONS OF TREE 
FUNCTIONS

Computations of tree functions are important 
for designing many algorithms for trees and 
graphs.

Some of these computations include preorder, 
postorder, inorder numbering of the nodes of 
a tree, number of descendants of each vertex, 
level of each vertex etc.



27

PROBLEMS IN PARALLEL 
COMPUTATIONS OF TREE 
FUNCTIONS
Most sequential algorithms for these 
problems use depth-first search for 
solving these problems.

However, depth-first search seems to be 
inherently sequential in some sense.



28

PARALLEL DEPTH-FIRST 
SEARCH

It is difficult to do depth-first search in parallel.

We cannot assign depth-first numbering to the 
node n unless we have assigned depth-first 
numbering to all the nodes in the subtree A.



29

PARALLEL DEPTH-FIRST 
SEARCH

There is a definite order of visiting the nodes in 
depth-first search.
We can introduce additional edges to the tree to 
get this order.
The Euler tour technique converts a tree into a 
list by adding additional edges.



30

PARALLEL DEPTH-FIRST 
SEARCH

The red (or, magenta ) arrows are followed when 
we visit a node for the first (or, second) time.

If the tree has n nodes, we can construct a list with 
2n - 2 nodes, where each arrow (directed edge)  is a 
node of the list.



31

EULER TOUR 
TECHNIQUE

For a node v T, p(v) is the parent of v.

Each red node in the list represents an edge of the 
nature < p(v) , v >.

We can determine the preorder numbering of a 
node of the tree by counting the red nodes in the list.



THE EULER-TOUR 
TECHNIQUE

The problem of 
computing the depth 
of each node in an n-
node binary tree

32



BINARY TREE
Let T be a binary tree stored in a PRAM

Each node i has fields parent[i], left[i] and right[i], which 
point to node i’s parent, left child and right child 
respectively

Let’s assume that each node is identified by a non-
negative integer

Also we associate not one but 3 processes with each 
node; we call these node’s A,B and C processors

Mapping between each node i and its 3 processors A,B 
and C:   3i, 3i+1, 3i+2  

A
B

C

33



COMPUTING DEPTH OF EACH NODE IN AN N NODE TREE 
TAKES O(N) TIME ON A SERIAL RAM

A simple parallel algorithm to compute depths propagates 
a “wave” downward from the root of the tree.
 The wave reaches all nodes at the same depth simultaneously, and 
thus by incrementing a counter carried along with the wave, we can 
compute the depth of each node.

This parallel algorithm works well on a complete binary 
tree, since it runs in time proportional to the tree’s height.

But the height of the tree 
could be as large as n-1

34



USING THE EULER-TOUR TECHNIQUE WE CAN COMPUTE 
NODE DEPTHS IN O(LOG N) TIME ON AN EREW PRAM

An Euler-tour of a graph is a cycle that traverses 
each edge exactly once, although it may visit a 
vertex more than ones
A connected, directed graph has an Euler tour if and 
only if for all vertices v, the in-degree of v equals the out 
degree of v
 Since each undirected edge (u,v) in an undirected graph 
maps to two directed edges (u,v) and (v,u) in the directed 
version, the directed version of any connected, 
undirected graph (and therefore of any undirected tree) has an 
Euler tour  

35



DEPTH OF NODES COMPUTATION 
First we form an Euler tour of the directed version of 
T.

The tour corresponds to walk of the tree with the 
following structure:
A node’s A processor points to the A processor of its left 
child, if it exist, and otherwise to its own B processor
A node’s B processor points to the A processor of its right 
child, if it exist, and otherwise to its own C processor
A node’s C processor points to the B processor of its parent, 
if it is a left child and to the C processor of its parent if it is 
a right child. The root’s C processor points to NIL.

36



A
B

C
A

B
C

A
B

C A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

37



FIRST STEP
Thus, the head of the linked list formed by the Euler 
tour is the root’s A processor, and the tail is the root’s 
C processor.
Given the pointers composing the original tree, an 
Euler tour can be constructed in O(1) time.
Once we have linked list representing the Euler tour 
of T, we place 
a 1 in each A processor, 
a 0 in each B processor and
a –1 in each C processor

38



A
B

C
1

0
-1

1
0

-1 1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

39



SECOND STEP

We then perform a parallel prefix computation using ordinary 
addition as the associative operation

We claim that after performing the parallel prefix computation, the 
depth of each node resides in the node’s C processor.  Why?

40



A
B

C
1

1
0

2
2

1 2
2

1

3
3

2

4
4

3

3
3

2

4
4

3

3
3

2

4
4

3

41



WHY ???

The numbers are placed into the A,B and C processors in 
such a way that the net effect of visiting a subtree is to 
add 0 to the running sum

The A processor of each node i contributes 1 to running 
sum

The B  processor of each node i contributes 0 because the 
depth of the node i’s left child equals the depth of the 
node i’s right child

The C processor contributes –1, so the entire visit to the 
subtree rooted at node i has no effect on the running sum. 

42



CONCLUSION

The list representing Euler-tour can be computed 
in O(1) time. 

It has 3n objects, and thus the parallel prefix 
computation takes only O(log n) time

Thus the total amount of time to compute all node 
depths is  O(log n).

Because no concurrent memory accesses are 
needed, the algorithm is an EREW algorithm. 

43



44

EULER TOUR 
TECHNIQUE
Let T = (V, E) be a given tree and let T’ = (V, E’ ) be 
a directed graph obtained from T.
Each edge (u, v)  E is replaced by two edges < u, 
v > and < v, u >.
Both the indegree and outdegree of an internal 
node of the tree are now same.
The indegree and outdegree of a leaf is 1 each.
Hence T’ is an Eulerian graph: ie. it has a directed 
circuit that traverses each arc exactly once.



45

EULER TOUR 
TECHNIQUE
An Euler circuit of a graph is an edge-disjoint
circuit which traverses all the nodes.
A graph permits an Euler circuit if and only if 
each vertex has equal indegree and 
outdegree.
An Euler circuit can be used for optimal 
parallel computation of many tree functions.
To construct an Euler circuit, we have to 
specify the successor edge for each edge.



46

CONSTRUCTING AN 
EULER TOUR
Each edge on an Euler circuit has a unique 
successor edge.
For each vertex v V we fix an ordering of the 
vertices adjacent to v.
If d is the degree of vertex v, the vertices 
adjacent to v are:
adj(v) = < u0, u1, …, ud -1 >
The successor of edge < ui, v > is:
s(< ui, v >) = < v, u(i + 1) mod d >, 0  i  (d - 1)



47

CONSTRUCTING AN 
EULER TOUR

Successor function table 

The resulting Eulerian 
Circuit



48

CORRECTNESS OF 
EULER TOUR

Consider the graph T’ = (V, E’ ) , where E’ is 
obtained by replacing each e E by two directed 
edges of opposite directions.

Lemma: The successor function s defines only 
one cycle and not a set of edge-disjoint cycles in 
T’.

Proof: We have already shown that the graph is 
Eulerian.

We prove the lemma through induction.



49

CORRECTNESS OF 
EULER TOUR

basis: When the tree has 2 nodes, there is 
only one edge and one cycle with two 
edges.

Suppose, the claim is true for n nodes. We 
should show that it is true when there are     
n + 1 nodes.



50

CORRECTNESS OF 
EULER TOUR

We can introduce an extra node by introducing a 
leaf to an existing tree, like the leaf v.

Initially, adj(u) = <…, v’, v’’, …> . Hence,               

s(< v’, u >) = < u, v’’ >.



51

CORRECTNESS OF 
EULER TOUR

After the introduction of v, adj(u) = <…, v’, v, v’’, …>

s(< v’, u >) = < u, v > and

s(< v, u >) = < u, v’’ >

Hence, there is only one cycle after v is introduced.



52

CONSTRUCTION OF EULER 
TOUR IN PARALLEL



53

CONSTRUCTION OF EULER 
TOUR IN PARALLEL

We assume that the tree is given as a set of 
adjacency lists for the nodes. The adjacency list 
L[v] for v is given in an array.

Consider a node v and a node ui adjacent to v.

We need:
 The successor < v, u(i + 1) mod d > for < ui, v >. This is done 
by making the list circular.
 < ui, v >. This is done by keeping a direct pointer from ui
in L[v] to v in L[ui].



54

CONSTRUCTION OF EULER 
TOUR IN PARALLEL

We can construct an Euler tour in O(1) time 
using O(n) processors.

One processor is assigned to each node of the 
adjacency list.

There is no need of concurrent reading, hence 
the EREW PRAM model is sufficient.



55

ROOTING A TREE

For doing any tree computation, we need to 
know the parent p(v) for each node v.

Hence, we need to root the tree at a vertex r.

We first construct an Euler tour and for the 
vertex r, set s(< ud -1, r >) = 0.

ud -1 is the last vertex adjacent to r.
In other words, we break the Euler tour at r.



56

ROOTING A TREE



57

ROOTING A TREE



58

ROOTING A TREE

Input: The Euler tour of a tree and a 
special vertex r.

Output: For each vertex v  r, the parent 
p(v) of v in the tree rooted at r.



59

ROOTING A TREE

begin

1. Set s(< u, r >) = 0, where u is the last vertex in 
the adjacency list of r.

2. Assign a weight 1 to each edge of the list 
and compute parallel prefix.

3. For each edge < x, y >, set x = p(y) whenever 
the prefix sum of < x, y > is smaller than the 
prefix sum of < y, x >.

end



60

ROOTING A TREE



61

COMPUTATION OF TREE 
FUNCTIONS

Given a tree T, for many tree computations:
We first construct the Euler tour of T
Then we root the tree at a vertex

We can compute:
The postorder number of each vertex
The preorder number of each vertex
The inorder number of each vertex
The level of each vertex
The number of descendants of each vertex.



62

TREE CONTRACTION

Some tree computations cannot be solved 
efficiently with the Euler tour technique alone.

An important problem is evaluation of an 
arithmetic expression given as a binary tree.



63

TREE CONTRACTION
Each leaf holds a constant and each internal node 
holds an arithmetic operator like +,.

The goal is to compute the value of the expression at 
the root.

The tree contraction technique is a systematic way 
of shrinking a tree into a single vertex.

We successively apply the operation of merging a 
leaf with its parent or merging a degree-2 vertex with 
its parent.



64

THE RAKE OPERATION

Let T = (V, E) be a rooted binary tree and for 
each vertex v, p(v) is its parent.

sib(v) is the child of p(v). We consider only 
binary trees.

In the rake operation for a leaf u such that    
p(u)  r.
Remove u and p(u) from T, and
Connect sib(u) to p(p(u)).



65

THE RAKE OPERATION

In our tree contraction algorithm, we apply the rake 
operation repeatedly to reduce the size of the binary 
tree.

We need to apply rake to many leaves in parallel in 
order to achieve a fast running time.



66

THE RAKE OPERATION

But we cannot apply rake operation to nodes 
whose parents are consecutive on the tree.

For example, rake operation cannot be 
applied to nodes 1 and 8 in parallel.

We need to apply the rake operation to non-
consecutive leaves as they appear from left to 
right.



67

THE RAKE OPERATION

We first label the leaves consecutively from left to 
right.

In an Euler path for a rooted tree, the leaves appear 
from left to right.

We can assign a weight 1 to each edge of the kind   
(v, p(v)) where v is a leaf.

We exclude the leftmost and the rightmost leaves. 
These two leaves will be the two children of the root 
when the tree is contracted to a three-node tree.

We do a prefix sum on the resulting list and the 
leaves are numbered from left to right.



68

THE RAKE OPERATION

We now store all the n leaves in an array A.

Aodd is the subarray consisting of the odd-
indexed elements of A.

Aeven is the subarray consisting of the even-
indexed elements of A.

We can create the arrays Aodd and Aeven in 
O(1) time and O(n) work.



69

TREE CONTRACTION 
ALGORITHM

begin

for iterations do

1. Apply the rake operation in parallel to all the 
elements of Aodd that are left children

2. Apply the rake operation in parallel to the 
rest of the elements in Aodd.

3. Set A := Aeven.

end



70

TREE CONTRACTION 
ALGORITHM



71

CORRECTNESS OF TREE 
CONTRACTION

Whenever the rake operation is applied in parallel to 
several leaves, the parents of any two such leaves 
are not adjacent.

The number of leaves reduces by half after each 
iteration of the loop. Hence the tree is contracted in 
O(log n) time.

Euler tour takes O(n) work.

The total number of operations for all the iterations 
of the loop is:



TREE COMPUTATIONS

Rooting a tree:

72


