

OPTIMAL MERGE-PARTITIONING			
$\begin{bmatrix} b_1 \dots b_{logm} \end{bmatrix} \begin{bmatrix} b_{logm+1} \dots b_{2logm} \end{bmatrix}$	•••	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
			_
$\[a_1 \dots a_{i(1)} \] \[a_{i(1)+1} \dots a_{i(2)} \] \dots$		$\boxed{\alpha_{i(i)+1}\alpha_{i(i+1)}} \cdots$	
Spawn k(m)=m/log m process	ors.		—
Each processor divides the array B into subarrays, B_i , where $ B_i $ = log m.			
It finds rank of b _{ilogm} in A using the binary search algorithm, and let j(i)=rank(b _{ilogm} :A).			
The configurations of A_i and B_i shown above.			
			4
			9

EXAMPLE

Let A=(4,6,7,10,12,15,18,20), B=(3,9,16,21)

m=4, k(m)=4/log4=2.

B=((3,9),(16,21)) rank(9,A)=3.

Thus A=((4,6,7),(10,12,15,18,20))

Note each element of A_1 and B_1 is larger than each element in A_0 or $B_0.$

Hence, we can merge A and B by merging separately the pairs (A_0,B_0) and $(A_1,B_1).$

5

TIMING ANALYSIS

The finding of j(i)'s takes O(n) time, since the binary search is applied to all the elements of A in parallel.

Thus the total number of operations required to execute this step (of doing the binary search and partitioning) is O((logn)xm/log(m))=O(m+n)

Consider the merging of two arrays each of length n.

After the partitioning step we end up with an independent set of merging sub-problems.

- This outcome is the essence of partitioning.
- We would like to handle each merging subproblem in O(logn) time, st the algorithm stays cost optimal.

