
20‐08‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY

DEBDEEP MUKHOPADHYAY
AND

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

PRAM ALGORITHMS:
MERGING AND GRAPH COLORING

2

20‐08‐2015

2

AN OPTIMAL MERGING

We have seen a parallel merging in the last class which takes O(log n)
time with n processors.

What would be a cost-optimal algorithm to perform the merging?

The technique is based on a general strategy which is called
partitioning.
 As opposed to Divide and Conquer, the crux lies here in suitably partitioning the

problem which helps combining to get the result easy.

3

OPTIMAL MERGE-PARTITIONING

Spawn k(m)=m/log m processors.

Each processor divides the array B into subarrays, Bi, where |Bi|=log m.

It finds rank of bilogm in A using the binary search algorithm, and let
j(i)=rank(bilogm:A).

The configurations of Ai and Bi shown above.

4

b1…blogm blogm+1…b2logm bilogm+1…b(i+1)logm… …

a1…aj(1) aj(1)+1…aj(2) … …aj(i)+1…aj(i+1)

20‐08‐2015

3

EXAMPLE

Let A=(4,6,7,10,12,15,18,20), B=(3,9,16,21)

m=4, k(m)=4/log4=2.

B=((3,9),(16,21))

rank(9,A)=3.

Thus A=((4,6,7),(10,12,15,18,20))

Note each element of A1 and B1 is larger than each element in A0 or
B0.

Hence, we can merge A and B by merging separately the pairs (A0,B0)
and (A1,B1).

5

PROOF

Let rank(bilogm:A)=j(i)

Thus we have: aj(i)<bilogm<aj(i)+1.

This result implies that:

bilogm+1>bilogm>aj(i) (thus each element of Bi is larger than each
element of Ai-1)

Likewise, aj(i)+1>bilogm (thus each element of Ai is larger than each
element of Bi-1)

6

20‐08‐2015

4

TIMING ANALYSIS

The finding of j(i)’s takes O(n) time, since the binary search is applied
to all the elements of A in parallel.

Thus the total number of operations required to execute this step (of
doing the binary search and partitioning) is
O((logn)xm/log(m))=O(m+n)

Consider the merging of two arrays each of length n.

After the partitioning step we end up with an independent set of
merging sub-problems.
 This outcome is the essence of partitioning.

 We would like to handle each merging subproblem in O(logn) time, st the algorithm
stays cost optimal.

7

THE MERGING SUBPROBLEMS

Consider the merging subproblem corresponding to (Ai,Bi). Recall
|Bi|=logn, for all indices i.

If |Ai|=O(log n), we can merge the pair (Ai,Bi) using an optimal
sequential algorithm in O(log n) time.

Otherwise, we apply the previous algorithm to partition Ai into blocks
each of which is of size O(log n) (in this case Ai plays the role of B,
and Bi plays the role of A!)
 This step will take O(log log n) time using O(|Ai|) operations.m

 Thus we can make each of the subsequences to be of length O(log n)

 Then we apply the best sequential algorithm to merge the subsequences in O(logn)

using number of processors Σ௜
஺೔

௟௢௚௡
ൌ the number of resources also does ,݊݃݋݈/݊

not increase asymptotically.

8

