PARALLEL AND DISTRIBUTED ALGORITHMS
BY
DEBDEEP MUKHOPADHYAY
AND
ABHISHEK SOMANI

http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

PRAM ALGORITHMS:
MERGING AND GRAPH COLORING
AN OPTIMAL MERGING

We have seen a parallel merging in the last class which takes $O(\log n)$ time with n processors.

What would be a cost-optimal algorithm to perform the merging?

The technique is based on a general strategy which is called partitioning.

* As opposed to Divide and Conquer, the crux lies here in suitably partitioning the problem which helps combining to get the result easy.

OPTIMAL MERGE-PARTITIONING

Spawn $k(m) = \frac{m}{\log m}$ processors.

Each processor divides the array B into subarrays, B_p, where $|B_p| = \log m$.

It finds rank of $b_{\log m}$ in A using the binary search algorithm, and let $j(i) = \text{rank}(b_{\log m}|A)$.

The configurations of A_j and B shown above.
EXAMPLE

Let $A = \{4,6,7,10,12,15,18,20\}$, $B = \{3,9,16,21\}$

$m = 4$, $k(m) = \frac{4}{\log 4} = 2$.

$B = ((3,9),(16,21))$

$\text{rank}(9,A) = 3$.

Thus $A = ((4,6,7),(10,12,15,18,20))$

Note each element of A_1 and B_1 is larger than each element in A_0 or B_0.

Hence, we can merge A and B by merging separately the pairs (A_0,B_0) and (A_1,B_1).

PROOF

Let $\text{rank}(b_{\text{log } m}|A) = j(i)$

Thus we have: $a_{(j)} < b_{\text{log } m} < a_{(j)+1}$.

This result implies that:

$b_{\text{log } m+1} > b_{\text{log } m} > a_{(j)}$ (thus each element of B_1 is larger than each element of A_{j-1})

Likewise, $a_{(j)+1} > b_{\text{log } m}$ (thus each element of A_j is larger than each element of B_{j-1})
TIMING ANALYSIS

The finding of \(j(i) \)'s takes \(O(n) \) time, since the binary search is applied to all the elements of \(A \) in parallel.

Thus the total number of operations required to execute this step (of doing the binary search and partitioning) is

\[O((\log n)\frac{x m}{\log(2m)}) = O(m+n) \]

Consider the merging of two arrays each of length \(n \).

After the partitioning step we end up with an independent set of merging sub-problems.

- This outcome is the essence of partitioning.
- We would like to handle each merging subproblem in \(O(\log n) \) time, so the algorithm stays cost optimal.

THE MERGING SUBPROBLEMS

Consider the merging subproblem corresponding to \((A_i, B_i)\). Recall \(|B_i| = \log n \), for all indices \(i \).

If \(|A_i| = O(\log n) \), we can merge the pair \((A_i, B_i)\) using an optimal sequential algorithm in \(O(\log n) \) time.

Otherwise, we apply the previous algorithm to partition \(A_i \) into blocks each of which is of size \(O(\log n) \) (in this case \(A_i \) plays the role of \(B \), and \(B_i \) plays the role of \(A \)).

- This step will take \(O(\log \log n) \) time using \(O(|A_i|) \) operations.
- Thus we can make each of the subsequences to be of length \(O(\log n) \)
- Then we apply the best sequential algorithm to merge the subsequences in \(O(\log n) \) using number of processors \(\sum_{i} \left(\frac{|A_i|}{\log n} \right) = n/\log n \), the number of resources also does not increase asymptotically.