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BRENT’S LAW
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MERGING TWO SORTED ARRAYS

An optimal RAM algorithm creates the merged list one element at a 
time.
 Requires at most n-1 comparisions to merge two sorted lists of n/2 elements.

 Time complexity Θሺ݊ሻ

 Can we do in lesser time?
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PARALLEL MERGE

Consider two sorted lists of distinct elements of size n/2.

We spawn n processors, one for each element of the list to be 
merged.

In parallel, the processors perform binary search of the corresponding 
elements in the other half of the array.
 Element in the lower half of the array performs a binary search in the upper half.

 Element in the upper half of the array performs a binary search in the lower half.

4



13‐08‐2015

3

THE TASK OF P3
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1 5 7 191713 23

2 4 8 211211 24

A[i=3] is larger than     
i-1=(3-1)=2 elements in 
the lower array (lower 
wrt. Index)

A[1] A[8]

A[9] A[16]

Perform a binary 
search with A[3] in the 
upper array.
Get a position 
high=index of the 
largest integer smaller 
than 7=>high=10.

Thus, 7 is larger than 2 
elements in the lower array, 
and larger than             
(high-n/2)=10-8=2 elements 
in the upper array.

So, P3 can calculate the 
position of 7 in the merged 
list, ie.  after (i-1)+(high-n/2), 
thus the position is       
(i+high-n/2).

THE TASK OF P11
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1 5 7 191713 23

2 4 8 211211 24

A[i=11]=8 is larger than     
i-(n/2+1)=(11-9)=2 
elements in the upper 
array (lower wrt. Index)

A[1] A[8]

A[9] A[16]

Perform a binary 
search with A[11] in the 
lower array.
Get a position 
high=index of the 
largest integer smaller 
than 8=>high=3.

Thus, 8 is larger than 2 
elements in the upper array, 
and larger than             
high=3 elements in the upper 
array.

So, P11 can calculate the 
position of 8 in the merged 
list, ie.  after (i-n/2-1)+(high), 
thus the position is       
(i+high-n/2).

Thus the same expression is used to 
place the elements in their proper 
position in the merged list.
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THE PRAM ALGORITHM
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PRAM (CONTD.)

8

Note that the final writing into the array is done by the processors 
without any conflict. All the locations are distinct.
Also note that the total number of operations performed have increased 
from that in a sequential algorithm Θ ݊ to Θሺ݈݊݊݃݋ሻ in the parallel 
algorithm.



13‐08‐2015

5

COST-OPTIMAL SOLUTIONS

We have seen examples of PRAM algorithms which are not cost 
optimal.

Is there a cost-optimal parallel reduction algorithm that has also the 
same time complexity?

9

BRENT’S THEOREM (1974)

Assume a parallel computer where each processor can perform an 
operation in unit time.

Further, assume that the computer has exactly enough processors to 
exploit the maximum concurrency in an algorithm with M operations, 
such that T time steps suffice.

Brent’s Theorem say that a similar computer with fewer processes, P, 
can perform the algorithm in time, ௉ܶ ൑ ܶ ൅ ሺܯ െ ܶሻ/ܲ
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BRENT’S THEOREM (PROOF)

Let si denote the number of computational operations performed by 
the parallel algorithm A at step i, where 1≤i≤t. 

By definition ∑ ௜ݏ ൌ ்.ܯ
௜ୀଵ

Thus, using p processors we can simulate step i in time 
௦೔
௣
.

By definition, 

௣ܶ ൌ ∑ ௦೔
௣
൑்

௜ୀଵ ∑ ௦೔ା௣ିଵ

௣
ൌ்

௜ୀଵ ∑ ௣

௣
൅்

௜ୀଵ ∑ ௦೔ିଵ

௣
்
௜ୀଵ ൌ ܶ ൅

ெି்

௣
.

Note this reduction is work-preserving, meaning that the total work 
does not change.

Also, note p is lesser than the initial number of processors, which is 
manifested by the increase in the time required.
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APPLICATION TO PARALLEL REDUCTION

We know of a solution with large number of processors, which takes Θ ݊
time.

Let us reduce the number of processors to ہሺ
௡

୪୭୥ ௡ሻۀ
ۂ processors.

Thus, 

௣ܶ ൑ logڿ ۀ݊ ൅
௡ିଵ ୪୭୥ڿି ௡ۀ

೙
೗೚೒೙

ൌ Θ ݊݃݋݈ ൅ ݊݃݋݈ െ
௟௢௚௡

௡
െ

୪୭୥మ௡

௡

ൌ Θ(logn)

Thus reducing the number of processors from n to 
௡

௟௢௚௡
does not change 

the complexity of the parallel algorithm.

If the total number of operations performed by the parallel algorithm is 
the same as an optimal sequential algorithm, then a cost optimal parallel 
algorithm does exist.
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AN ORDER ANALYSIS: WORK-DEPTH MODEL

Let ݈௜ denote the computation in the ݅௧௛ level.

Thus, by assigning 
௟೔
௉

operations to each of the P processors in the 

PRAM, the operations for level i can be performed in ܱሺ
௟೔
௉
ሻ steps. 

Summing the time over all the D (Depth) levels, 

௉ܶோ஺ெ ,ܦ,ܹ P ൌ
Oሺ∑

௟೔
௉
ሻ ൌ஽

௜ୀଵ O ∑ ሺ
௟೔
௉
൅ 1ሻሻ ൌ ܱሺ

ଵ

௉
ሺ∑ ݈௜ሻ ൅ ஽ܦ

௜ୀଵ
஽
௜ୀଵ ൌ ܱሺ

ௐ

௉
൅ .ሻܦ

Note: W is the total work done by the sequential algorithm, which we 
have assumed is the same.

The total work performed by the PRAM is O(W+PD). 

A cost optimal solution thus can be obtained if PD≤W, or P ≤W/D.
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EXERCISES

Now think of the cost optimal solutions that we discussed, 
like reduction, prefix sum, suffix sum, pointer jumping, tree 
traversal etc. in the light of Brent’s Law.
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NON-OBVIOUS APPLICATIONS OF PREFIX 
SUM

Suppose, we have an array of 0’s and 1’s, and we want to determine 
how many 1’s begin the array.
 Ex (1,1,1,0,1,1,0,1)..The answer is 3.

15

NON-OBVIOUS APPLICATIONS OF 
PARALLEL SCAN / REDUCTIONS

Suppose, we have an array of 0’s and 1’s, and we want to determine 
how many 1’s begin the array.
 Ex (1,1,1,0,1,1,0,1)..The answer is 3.

It may be non-intuitive to think of an associative operator which we 
might use here!

However, there seems to be a common trick, which we can try to learn.
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THE TRICK

Let us define for any segment of the array by the notation (x,p)
 x denotes the number of leading 1’s
 p denotes whether the segment contains only 1’s.

Thus, each element ai is replaced by (ai,ai).

How do we combine, (x,p) and (y,q)?

Let us define an operator, ⊗ to do this.

It is intuitive that (x,p) ⊗ (y,q)=(x+py,pq). Why?

Is this operator associate?
 ((x,p) ⊗ (y,q)) ⊗(z,r)=(x+py,pq) ⊗(z,r)=(x+py+pqz,pqr)
 (x,p) ⊗ ((y,q)) ⊗(z,r))=(x,p)⊗(y+qz,qr)=(x+p(y+qz),pqr)=(x+py+pqz,pqr)

Now all the previous parallelizations can be applied 
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EXAMPLE
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1        1 1        0 1        1 0        1

(1,1)    (1,1) (1,1)    (0,0) (1,1)    (1,1) (0,0)    (1,1)

(2,1) (1,0) (2,1) (0,0)

(3,0) (2,0)

(3,0)
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CAN YOU EVALUATE A POLYNOMIAL IN 
PARALLEL USING A SIMILAR METHOD?
Consider a polynomial : a0xn-1+a1xn-2+…+an-2x+an-1.

Each segment also denotes a polynomial. Say, the first two coefficients denoted 
a0x+a1

Let us consider (p,y) to denote a segment. 
 p denotes the value of the segment’s polynomial evaluated for x
 y denotes the value of xn, where n is the length of the segment

Thus, each element ai is replaced by (ai,x).

How do we combine, (p,y) and (q,z)?

Let us define an operator, ⊗ to do this.

It is intuitive that (p,y) ⊗ (q,z)=(pz+q,yz). Why?

Is this operator associate?
 ((a,x) ⊗ (b,y)) ⊗(c,z)=(ay+b,xy) ⊗(c,z)=(ayz+bz+c, xyz)
 (a,x) ⊗ ((b,y)) ⊗(c,z))=(a,x)⊗(bz+c,yz)=(ayz+bz+c, xyz)

Now all the previous parallelizations can be applied 
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ANNOUNCEMENTS:

NO CLASS ON 13TH AUGUST.

QUIZ ON 14TH AUGUST, 2015 AT 4:30 PM
-- SYLLABUS (TILL THIS POINT)

IF YOU AGREE, WE CAN SWAP THE ABOVE 
TOO!
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