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PRAM ALGORITHMS: 
POINTER JUMPING
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LIST RANKING

Consider the problem of finding, for each element of n elements on a 
linked list, the suffix sums of the last i elements of the list, where 

	 ݅ ൑ ݅ ൑ ݊.

The suffix sum problem is a variant of the prefix sum problem.
 Array is replaced by a linked list.

 Sums are computed from the end.

If the elements of the list are 0 or 1, and the associative operation is 
addition, the problem is called the list ranking problem.
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LINK RANKING

One way to solve this is to traverse the list and count the 
number of links traversed between the list element and the 
end of the list. 

Only a single pointer can be followed in one step, and 
there are n-1 pointers between the first element and the 
end of the list.
 How can any algorithm traverse such a list in less than  Θ ݊ time?
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PARALLELISATION

We associate a processor with every list element 
and jump pointers in parallel!
 The distance to the end of the list is cut in half through the instruction 
:

ݐݔ݁݊ ݅ ← ݐݔሾ݊݁ݐݔ݁݊ ݅ ሿ
Hence, a logarithmic number of pointer jumpings are sufficient to 
collapse the list so that every element points to the last list element.

If a processor adds to its own link traversal count, position[i], the 
current link traversal count of the successors it encounters, the list 
position will be correctly determined.
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ILLUSTRATING THE PROCESS OF LIST RANKING

List ranking problem
 Given a singly linked list L with n objects, for each node, compute 

the distance to the end of the list

If d denotes the distance
node.d =   0                         if node.next = nil

 node.next.d + 1    otherwise

Serial algorithm: O(n) 

Parallel algorithm
 Assign one processor for each node
 Assume there are as many processors as list objects 
 For each node i, perform

1. i.d = i.d + i.next.d
2. i.next = i.next.next // pointer jumping

{
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LIST RANKING – EXAMPLE 1

LIST RANKING – EXAMPLE 2

The position of each item on the n-element list can be determined 
in ۀ࢔܏ܗܔڿ	pointer jumping steps.
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THE PRAM ALGORITHM
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Note this step 
does not depend 
on j. 
There are ۀ࢔܏ܗܔڿ
steps. 
There are n 
processors. 
So total cost is:

Θሺ݊ log ݊ሻ
Not cost optimal!

THE SAME CODE USING POINTER 
NOTATIONS

List_ranking(L)
1. for all Pi for each node i, do

2. if i->next = null then i.d = 0

3. else i.d = 1

4. while(i->next != null) do

5. i.d = i.d + i->next.d

6. i->next = i->next->next

10



08‐08‐2015

6

LIST RANKING - DISCUSSIONS

Synchronization is important
 In step 6 (i->next = i->next->next), all processors must read right hand side before any 

processor write left hand side

The list ranking algorithm is EREW
 If we assume in step 5 (i.d = i.d + i.next.d) all processors read i.d and then read i.next.d
 If j.next = i, i and j do not read i.d concurrently

Work performance
 performs O(n log n) work since n processors in O(log n) time

Work efficient
 A PRAM algorithm is work efficient w.r.t another algorithm if two       algorithms are within 

a constant factor
 Is the link ranking algorithm work-efficient w.r.t the serial algorithm?
 No, because O(n log n) versus O(n)

Speedup 
 S = n / log n

PREORDER TREE TRAVERSAL

Sometimes it is appropriate to reduce a complicated looking problem 
into a simpler form for which a parallel algorithm is already known.

Let us consider the problem of numbering the vertices of a rooted 
tree in preorder (depth first search order).

At first glance this problem looks sequential! 

12



08‐08‐2015

7

RECURSIVE PREORDER TRAVERSAL

PREORDER.TRAVERSAL(nodeptr):

Begin

if nodeptr≠null then

nodecount nodecount + 1

nodeptr.label nodecount

PREORDER.TRAVERSAL(nodeptr.left)

PREORDER.TRAVERSAL(nodeptr.right)

endif

End 
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Where is the parallelism?
The fundamental operation 
assigns a label to a node.

We cannot assign labels to the 
vertices in the right subtree of 
the left subtree, until we know 
how many vertices are on the 
left subtree of the left subtree, 
and so on. 

The algorithm seems inherently 
sequential!

Can we parallelize this?

IDENTIFY THE CHARACTER

14
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IDENTIFY THE CHARACTER
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IDENTIFY THE CHARACTER
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Robert Endre Tarjan (born April 30, 1948) is 
an American computer scientist and 
mathematician. He is the discoverer of 
several graph algorithms, including Tarjan's
off-line least common ancestors algorithm, 
and co-inventor of both splay trees and 
Fibonacci heaps. 

Tarjan is currently the James S. McDonnell 
Distinguished University Professor of 
Computer Science at Princeton University, 
and the Chief Scientist at Intertrust
Technologies (Source: Wiki)
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PARALLELIZATION OF THE TRAVERSAL

Instead of focusing on the vertices, let us look into the edges.

When we perform a preorder traversal, we systematically work our 
way through the edges of the tree.
 We pass along every vertex twice: one heading down from the parent to the child, 

and one going from the child to the parent.

 If  we divide each tree edge into two edges, one corresponding to the downward 
traversal, and one corresponding to the upward traversal, then the problem of  traversing 
a tree turns into the problem of  traversing a single linked list. 
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TARJAN AND VISHKIN (1984)

4 steps:

1. The algorithm constructs a singly linked list. Each vertex of the linked 
list corresponds to a downward or upward edge traversal.

2. Algorithm assigns weights to the vertices of the newly created single 
linked list.
 For vertices corresponding to downward edges, the weight is 1 (it contributes to node 

count).

 For vertices corresponding to upward edges, the weight is 0 (it does not contribute to node 
count).

3. For each element of the singly-linked list, the rank of each element is 
determined (by pointer jumping).

4. The processors associated with the downward edges use the ranks they 
have computed to assign a preorder traversal number to their associated 
tree nodes (the tree node at the end of the downward edge).

18
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EXAMPLE
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a) Tree
b) Double Tree Edges, distinguishing 

downward edges from upward 
edges.

c) Build linked list out of directed tree 
edges. Associate 1 with downward 
edges, and 0 with upward edges.

d) Use pointer jumping to compute total 
weight from each vertex to end of 
list.

The elements of the linked list which 
correspond to downward edges, have 
been shaded.
Processors managing these elements 
assign preorder values.
For example, (E,G) has a weight 4, 
meaning tree node G is 4th node from 
end of preorder traversal list.
The tree has 8 nodes, so it can compute 
that tree node G has label 5 in preorder 
traversal (=8-4+1)

C,F

DATA STRUCTURE FOR THE TREE

For every tree node, the data structure stores the node’s parent, the node’s 
immediate sibling to the right, and the node’s leftmost child.

Representing the node this way keeps the amount of data stored a 
constant for each tree node and simplifies the tree traversal.

20
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PROCESSOR ALLOCATION

The PRAM algorithm spawns 2(n-1) processors.

A tree with nodes have (n-1) edges. 

We are dividing each edge into two edges, one for the downward 
traversal and one for the upward traversal.

So, the algorithm needs 2(n-1) processors to manipulate each of  the  
2(n-1) edges of  the singly-linked list of  elements corresponding to the 
edge traversals.
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CONSTRUCTION OF THE LINKED LIST

Once all the processors have been activated they construct 
the linked list:
 P(i,j): The processor for the edge (i,j)

 Note (j,i) has a different processor P(j,i) 

Given an edge (i,j), P(i,j) must compute the successor of (i,j) 
and store in a global array: succ[1…2(n-1)].
 If the successor of (i,j) is (j,k), then succ[(i,j)](j,k)

22
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HANDLING UPWARD EDGES 
Edge (i,j), such that parent(i)=j
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i

j

k

If sibling[i]≠NULL
succ[(i,j)](j,sibling[i])

HANDLING UPWARD EDGES 
Edge (i,j), such that parent(i)=j

24

i

j

k

If sibling[i]≠NULL
succ[(i,j)](j,sibling[i])

i

j

k Else If parent[i]≠NULL
succ[(i,j)](j,parent[i])
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HANDLING UPWARD EDGES 
Edge (i,j), such that parent(i)=j
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i

j

k

If sibling[i]≠NULL
succ[(i,j)](j,sibling[i])

i

j

k Else If parent[i]≠NULL
succ[(i,j)](j,parent[i])

i

j

Else 
succ[(i,j)](i,j)

The edge is at the end of 
the tree traversal, so we 
put a loop at the end of 
the element list. 

HANDLING UPWARD EDGES 
Edge (i,j), such that parent(i)=j
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i

j

k

If sibling[i]≠NULL
succ[(i,j)](j,sibling[i])

i

j

k Else If parent[i]≠NULL
succ[(i,j)](j,parent[i])

i

j

j is the root.
position[j]1

Else 
succ[(i,j)](i,j)

The edge is at the end of 
the tree traversal, so we 
put a loop at the end of 
the element list. 

position[1…2(n-1)] 
is a global array to 
hold the edge ranks.
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HANDLING DOWNWARD EDGES

Edge (i,j), such that parent[i]≠j.
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i

i

k

If child[j]≠NULL
succ[(i,j)](j,child[j])

HANDLING DOWNWARD EDGES

Edge (i,j), such that parent[i]≠j.

28

i

i

k

If child[j]≠NULL
succ[(i,j)](j,child[j])

i

i

else
succ[(i,j)](j,i)

ie. j is a leaf and the 
successor is the edge back 
from the child to the 
parent.
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ASSIGNING EDGE RANKS

After the processors construct the list, they assign position values:
 1 to those elements corresponding to downward edges 

 0 to those elements corresponding to upward edges.

 Note the root is already handled.
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if parent[i]=j, position[(i,j)]0
Else position[(i,j)]1

POINTER JUMPING: SUFFIX SUM

The pointer jumping follows subsequently to compute the suffix sum.

The final position values indicate the number of preorder traversal 
nodes between the list element and the end of the list.

To compute each node’s preorder traversal label compute               
(n-position+1).

30
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PRAM PROGRAM
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PRAM ALGORITHM (CONTD.)
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Time Complexity:Oሺڿlog ݊ ۀ
Processors: O(n)
Cost: O(nlogn)


