
27‐07‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY

DEBDEEP MUKHOPADHYAY
AND

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

PRAM ALGORITHMS

2

27‐07‐2015

2

RAM: A MODEL OF SERIAL COMPUTATION

The Random Access Machine (RAM) is a model of a one-address
computer.
 Consists of a memory

 A read-only input tape

 A write-only output tape

 A program

3

Aho, HopCroft, and
Ulman, 1974

Input tape consists of a
sequence of integers.
Every time an input value is
read, the input head
advances one square.
Likewise, the output head
advances after every write.

Memory consists of
unbounded set of
registers, r0, r1, …

Each register holds a
single integer.

Register r0 is the
accumulator, where
computations are
performed.

COST MODELS

Uniform Cost Criterion: each RAM instruction
requires one unit of time to execute. Every
register requires one unit of space.

Logarithmic Cost Criterion: Assumes that
every instruction takes a logarithmic number
of time units (wrt. the length of the
operands), and that every register requires
a logarithmic number of units of space.

Thus, uniform cost criteria count the number
of operations and logarithmic cost criteria
count the number of bit operations.

The uniform cost criterion is applicable if
the values manipulated by a program
always fit into one computer word.

4

Consider an 8 bit adder.
In the uniform cost criteria to
analyze the run time of the
adder, we would say that the
adder takes 1 unit of time, ie.
T(N)=1.
However, in the logarithmic
model you would consider that
the 1’s position bits are added,
followed by the 2’s position bits,
and so on. In this model, thus
there are 8 smaller additions
(for every bit positions) and each
requires a unit of time. Thus,
T(N)=8. Generalizing,
T(N)=log(N).

27‐07‐2015

3

TIME COMPLEXITIES IN THE RAM MODEL

Worst case time complexity: The function f(n), the maximum time taken
by the program to execute over all inputs of size n.

Expected time complexity: It is the average time over the execution
times for all inputs of size n.

Analogous definitions hold for the space complexities (just replace the
time word by space).

5

THE PRAM MODEL
A PRAM consists of a control unit, global memory, an unbounded set of
processors, each with its own private memory.

Active processors execute identical instructions.

Every processor has a unique index, and the value can be used to
enable or disable the processor, or influence which memory locations it
accesses.

6

27‐07‐2015

4

A SIMPLISTIC PICTURE

7

• All processing
elements (PE)
execute
synchronously the
same algorithm and
work on distinct
memory areas.

• Neither the number
of PEs nor the size
of memory is
bounded.

• Any PE can access
any memory
location in one unit
of time.

• The last two
assumptions
are unrealistic!

Cost of a PRAM computation is the product of the
parallel time complexity and the number of processors
used. For example, a PRAM algorithm that has time
complexity Θሺlog	pሻ using p processors has cost
Θ ݌	݃݋݈݌ .

THE PRAM COMPUTATION STEPS

A PRAM computation starts with the input stored in global memory
and a single active processing element.

During each step of the computation an active, enabled processor
may read a value from a single private or global memory location,
perform a single RAM operation, and write into one local or global
memory location.

Alternatively, during a computation step a processor may activate
another processor.

All active, enabled processors must execute the same instruction, albeit
on different memory locations.
 This condition can be relaxed. However we will stick to it.

The computation terminates when the last processor halts.

8

27‐07‐2015

5

PRAM MODELS
The models differ in how they handle read or write
conflicts, ie. when two or more processors attempt to read
from or write to the same global memory location.
1. EREW (Exclusive Read Exclusive Write) Read or write conflicts are not

allowed.

2. CREW (Concurrent Read Exclusive Write) Concurrent reading allowed, ie.
Multiple processors may read from the same global memory location
during the same instruction step. Write conflicts are not allowed.

1. During a given time, ie. During a given step of an algorithm, arbitrarily many PEs can read
the value of a cell simultaneously while at most one PE can write a value into a cell.

3. CRCW (Concurrent Read Concurrent Write): Concurrent reading and
writing are allowed. A variety of CRCW models exist with different
policies for handling concurrent writes to the same global address:

1. Common: All processors concurrently writing into the same global address must be writing
the same value.

2. Arbitrary: If multiple processors concurrently write to the same global address, one of the
competing processors is arbitrarily choses as the winner, and its value is written.

3. Priority: The processor with the lowest index succeeds in writing its value.
9

RELATIVE STRENGTHS

The EREW model is the weakest.
 A CREW PRAM can execute any EREW PRAM algorithm in the same time. This is

obvious, as the concurrent read facility is not used.
 Similarly, a CRCW PRAM can execute any EREW PRAM algorithm in the same amount

of time.

The PRIORITY PRAM model is the strongest.
 Any algorithm designed for the COMMON PRAM model will execute in the same time

complexity in the ARBITRARY or PRIORITY PRAM models.
 If the processors writing to the same location write the same value choosing an arbitrary processor would cause

the same result.

 Likewise, it also produces the same result when the processor with the lowest index is chosen the winner.

Because the PRIORITY PRAM model is stronger than the EREW PRAM
model, an algorithm to solve a problem on the EREW PRAM can have
higher time complexity than an algorithm solving the same problem on
the PRIORITY PRAM model.

10

27‐07‐2015

6

COLE’S RESULT ON SORTING ON EREW
PRAM

Cole [1988] A p-processor EREW PRAM can sort a p-element array
stored in global memory in Θሺlog .time	ሻ݌

How can we use this to simulate a PRIORITY CRCW PRAM on an
EREW PRAM model?

11

SIMULATING PRIORITY-CRCW ON EREW
Concurrent write operations take constant time on a p-processor
PRIORITY PRAM.

12

a) Processors
P1, P2, P4
attempt to
write values
to memory
locations M3.
P1 wins, as it
has least
index. P3
and P5
attempts to
write at M7.
P3 wins.

b) Simulating
Concurrent write on
the EREW PRAM
model.
Each processor
writes
(address,processor
number) to a global
array T.
The processors sort T
in Θሺlog 	.ሻ݌
In constant time, the
processors can set 1
in those indices in S
which corresponds to
winning processors.

Processor P1 reads memory location T1, retrieves (3,1) and writes 1 to S1.
P2 reads T2, ie. (3,2), and then reads T1 ie. (3,1). Since the first arguments
match, it flags S2=0. Likewise for the rest. Thus the highest priority
processor accessing any particular location can be found in constant
time.
Finally, the winning processors write their values.

27‐07‐2015

7

IMPLICATION

A p-processor PRIORITY PRAM can be simulated by a p-processor
EREW PRAM with time complexity increased by a factor of Θሺlog 	.ሻ݌

13

PRAM ALGORITHMS
PRAM algorithms work in two phases:

First phase: a sufficient number of processors are activated.

Second phase: These activated processors perform the computation in
parallel.

Given a single active processor to begin with it is easy to see that
logڿ .activation steps are needed to activate p processorsۀ݌

14

Meta-Instruction in the PRAM
algorithms:
spawn (<processor names>)
To denote the logarithmic time
activation of processors from a
single active processor.

27‐07‐2015

8

SECOND PHASE OF PRAM ALGORITHMS

To make the programs of the second phase of the PRAM algorithms
easier to read, we allow references to global registers to be array
references.

We assume there is a mapping from these array references to
appropriate global registers.

The construct

for all <processor list> do <statement list> endfor

denotes a code segment to be executed in parallel by all the specified
processors.

Besides the special constructs already described, we express PRAM
algorithms using familiar control constructs: if…then….else…endif,
for…endfor, while…endwhile, and repeat…until. The symbol  denotes
assignment.

15

PARALLEL REDUCTION

The binary tree is one of the most important paradigms of parallel
computing.

In the algorithms that we refer here, we consider an inverted binary
tree.
 Data flows from the leaves to the root. These are called fan-in or reduction

operations.

More formally, given a set of n values a1, a2, …, an and an
associative binary operator ⊕, reduction is the process of computing
ܽ1⊕ ܽ2⊕⋯⊕ܽ݊.
 Parallel Sum is an example of a reduction operation.

16

27‐07‐2015

9

PARALLEL SUMMATION IS AN EXAMPLE
OF REDUCTION

How do we write the PRAM
algorithm for doing this
summation?

17

GLOBAL ARRAY BASED EXECUTION

The processors in a PRAM
algorithm manipulate data
stored in global registers.

For adding n numbers we

spawn ہ
௡

ଶ
ۂ processors.

Consider the example to
generalize the algorithm.

18

P0 P1 P2 P3 P4

P0 P2

P0

P0

j=0

j=1

j=2

j=3

27‐07‐2015

10

GLOBAL ARRAY BASED EXECUTION

Each addition corresponds
to:

A[2i]+A[2i+2j].

Note, the processor which is
active has an i such that:
i mod 2j=0 (ie. keep only
those processors active).

Also check that the array
does not go out of bound.
 ie, 2i+2j<n

19

P0 P1 P2 P3 P4

P0 P2

P0

P0

j=0

j=1

j=2

j=3

EREW PRAM PROGRAM

20

27‐07‐2015

11

COMPLEXITY

The SPAWN routine requires ݃݋݈ڿ
௡

ଶ
ۀ doubling steps.

The sequential for loop executes ڿlog ۀ݊ times.
 Each iteration takes constant time.

Hence overall time complexity is Θሺlog ݊ሻ given n/2 processors.

21

PREFIX SUM

Given a set of n values a1, a2, …, an, and an associative operation
⊕, the prefix sum problem is to calculate the n quantities:

a1,

a1 ⊕ a2,

…

a1 ⊕ a2 ⊕ … ⊕ an

22

27‐07‐2015

12

AN APPLICATION OF PREFIX SUM

We are given an array A of n
letters. We want to pack the
uppercase letters in the initial
portion of A while maintaining their
order. The lower case letters are
deleted.

a) Array A contains both uppercase
and lowercase letters. We want to
pack uppercase letters into
beginning of A.

b) Array T contains a 1 for every
uppercase letter, and 0 for
lowercase.

c) Array T after prefix sum. For
every element of A containing an
uppercase letter, the corresponding
element of T is the element’s index
in the packed array.

d) Array A after packing.

23

GLOBAL ARRAY BASED EXECUTION IN
EREW
There are n-1 processors
activated.

Each one accesses A[i], then
accesses A[i-2j], where j is the
depth (j varies from 0 to
logڿ ۀ݊ െ 1.

Of course, the bounds need to
be checked.

24

27‐07‐2015

13

THE PRAM PSEUDOCODE

25

COMPLEXITY

Running time is t(n) = (lg n)

Cost is c(n) = p(n)  t(n) = (n lg n)

Note not cost optimal, as RAM takes (n)

26

27‐07‐2015

14

MAKING THE ALGORITHM COST OPTIMAL

Example Sequence – 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Use n / lg n PEs with lg(n) items each

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

STEP 1: Each PE performs sequential prefix sum

0,1,3,6 4,9,15,22 8,17,27,38 12,25,39,54

STEP 2: Perform parallel prefix sum on last nr. in PEs

0,1,3,6 4,9,15,28 8,17,27,66 12,25,39,120

Now prefix value is correct for last number in each PE

STEP 3: Add last number of each sequence to incorrect sums in next
sequence (in parallel)

0,1,3,6 10,15,21,28 36,45,55,66 78,91,105,120

27

A COST-OPTIMAL EREW ALGORITHM

In order to make the prefix algorithm optimal, we must reduce
the cost by a factor of lg n.

We reduce the nr of processors by a factor of lg n (and check
later to confirm the running time doesn’t change).

Let k = lg n and m = n/k

The input sequence X = (x0, x1, ..., xn-1) is partitioned into m
subsequences Y0, Y1 ,, Ym-1 with k items in each subsequence.
 While Ym-1 may have fewer than k items, without loss of
generality (WLOG) we may assume that it has k items here.

Then all sequences have the form,
Yi = (xi*k, xi*k+1, ..., xi*k+k-1)

28

27‐07‐2015

15

PRAM ALGORITHM OUTLINE

Step 1: For 0  i < m, each processor Pi computes the prefix
computation of the sequence Yi = (xi*k, xi*k+1, ..., xi*k+k-1) using
the RAM prefix algorithm (using ) and stores prefix results as
sequence si*k, si*k+1, ... , si*k+k-1.

Step 2: All m PEs execute the preceding PRAM prefix algorithm
on the sequence (sk-1, s2k-1 , ... , sn-1)
 Initially Pi holds si*k-1
 Afterwards Pi places the prefix sum sk-1  ...  sik-1 in sik-1

Step 3: Finally, all Pi for 1im-1 adjust their partial value
sums for all but the final term in their partial sum subsequence
by performing the computation

sik+j  sik+j  sik-1
for 0  j  k-2.

29

COMPLEXITY ANALYSIS

Analysis:
 Step 1 takes O(k) = O(lg n) time.
 Step 2 takes (lg m) = (lg n/k)

= O(lg n- lg k) = (lg n - lg lg n)
= (lg n)

 Step 3 takes O(k) = O(lg n) time
 The running time for this algorithm is (lg n).
 The cost is ((lg n)  n/(lg n)) = (n)
 Cost optimal, as the sequential time is O(n)

Can you write the complete pseudocode in the
PRAM model?

30

27‐07‐2015

16

BROADCASTING ON A PRAM

“Broadcast” can be done on CREW PRAM in O(1) steps:
 Broadcaster sends value to shared memory
 Processors read from shared memory

Requires lg(P) steps on EREW PRAM.

M

PPPPPPPP

B

CONCURRENT WRITE – FINDING MAX

Finding max problem
 Given an array of n elements, find the maximum(s)
 sequential algorithm is O(n)

Data structure for parallel algorithm
 Array A[1..n]
 Array m[1..n]. m[i] is true if A[i] is the maximum
 Use n2 processors

Fast_max(A, n)
1.for i = 1 to n do, in parallel
2. m[i] = true // A[i] is potentially maximum
3.for i = 1 to n, j = 1 to n do, in parallel
4. if A[i] < A[j] then
5. m[i] = false
6.for i = 1 to n do, in parallel
7. if m[i] = true then max = A[i]
8.return max

Time complexity: O(1)

27‐07‐2015

17

CONCURRENT WRITE – FINDING MAX

Concurrent-write
 In step 4 and 5, processors with A[i] < A[j] write the same value ‘false’ into the same

location m[i]
 This actually implements m[i] = (A[i]  A[1])  …  (A[i]  A[n])

Is this work efficient?
 No, n2 processors in O(1)
 O(n2) work vs. sequential algorithm is O(n)

What is the time complexity for the Exclusive-write?
 Initially elements “think” that they might be the maximum
 First iteration: For n/2 pairs, compare.
 n/2 elements might be the maximum.

 Second iteration: n/4 elements might be the maximum.
 log n th iteration: one element is the maximum.

 So Fast_max with Exclusive-write takes O(log n).

O(1) (CRCW) vs. O(log n) (EREW)

CRCW VERSUS EREW - DISCUSSION

CRCW
 Hardware implementations are expensive
 Used infrequently
 Easier to program, runs faster, more powerful.
 Implemented hardware is slower than that of EREW
 In reality one cannot find maximum in O(1) time

EREW
 Programming model is too restrictive
 Cannot implement powerful algorithms

So, CREW is the most popular parallel model.

