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RAM: A MODEL OF SERIAL COMPUTATION

The Random Access Machine (RAM) is a model of a one-address 
computer.
 Consists of a memory

 A read-only input tape

 A write-only output tape

 A program
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Aho, HopCroft, and 
Ulman, 1974

Input tape consists of a 
sequence of integers.
Every time an input value is 
read, the input head 
advances one square.
Likewise, the output head 
advances after every write.

Memory consists of 
unbounded set of 
registers, r0, r1, …

Each register holds a 
single integer.

Register r0 is the 
accumulator, where 
computations are 
performed.

COST MODELS 

Uniform Cost Criterion: each RAM instruction 
requires one unit of time to execute. Every 
register requires one unit of space.

Logarithmic Cost Criterion: Assumes that 
every instruction takes a logarithmic number 
of time units (wrt. the length of the 
operands), and that every register requires 
a logarithmic number of units of space.

Thus, uniform cost criteria count the number 
of operations and logarithmic cost criteria 
count the number of bit operations. 

The uniform cost criterion is applicable if 
the values manipulated by a program 
always fit into one computer word.
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Consider an 8 bit adder. 
In the uniform cost criteria to 
analyze the run time of the 
adder, we would say that the 
adder takes 1 unit of time, ie. 
T(N)=1.
However, in the logarithmic 
model you would consider that 
the 1’s position bits are added, 
followed by the 2’s position bits, 
and so on. In this model, thus 
there are 8 smaller additions 
(for every bit positions) and each 
requires a unit of time. Thus, 
T(N)=8. Generalizing, 
T(N)=log(N).
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TIME COMPLEXITIES IN THE RAM MODEL

Worst case time complexity: The function f(n), the maximum time taken 
by the program to execute over all inputs of size n.

Expected time complexity: It is the average time over the execution 
times for all inputs of size n.

Analogous definitions hold for the space complexities (just replace the 
time word by space).
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THE PRAM MODEL
A PRAM consists of a control unit, global memory, an unbounded set of 
processors, each with its own private memory.

Active processors execute identical instructions.

Every processor has a unique index, and the value can be used to 
enable or disable the processor, or influence which memory locations it 
accesses.

6
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A SIMPLISTIC PICTURE

7

• All processing 
elements (PE) 
execute 
synchronously the 
same algorithm and 
work on distinct 
memory areas.

• Neither the number 
of PEs nor the size 
of memory is 
bounded.

• Any PE can access 
any memory 
location in one unit 
of time. 

• The last two 
assumptions 
are unrealistic!

Cost of a PRAM computation is the product of the 
parallel time complexity and the number of processors 
used. For example, a PRAM algorithm that has time 
complexity Θሺlog	pሻ using p processors has cost 
Θ ݌	݃݋݈݌ .

THE PRAM COMPUTATION STEPS

A PRAM computation starts with the input stored in global memory 
and a single active processing element.

During each step of the computation an active, enabled processor 
may read a value from a single private or global memory location, 
perform a single RAM operation, and write into one local or global 
memory location. 

Alternatively, during a computation step a processor may activate 
another processor. 

All active, enabled processors must execute the same instruction, albeit 
on different memory locations. 
 This condition can be relaxed. However we will stick to it.

The computation terminates when the last processor halts.
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PRAM MODELS
The models differ in how they handle read or write 
conflicts, ie. when two or more processors attempt to read 
from or write to the same global memory location. 
1. EREW (Exclusive Read Exclusive Write) Read or write conflicts are not 

allowed.

2. CREW (Concurrent Read Exclusive Write) Concurrent reading allowed, ie. 
Multiple processors may read from the same global memory location 
during the same instruction step. Write conflicts are not allowed. 

1. During a given time, ie. During a given step of an algorithm, arbitrarily many PEs can read 
the value of a cell simultaneously while at most one PE can write a value into a cell.

3. CRCW (Concurrent Read Concurrent Write): Concurrent reading and 
writing are allowed. A variety of CRCW models exist with different 
policies for handling concurrent writes to the same global address:

1. Common: All processors concurrently writing into the same global address must be writing 
the same value.

2. Arbitrary: If multiple processors concurrently write to the same global address, one of the 
competing processors is arbitrarily choses as the winner, and its value is written.

3. Priority: The processor with the lowest index succeeds in writing its value. 
9

RELATIVE STRENGTHS

The EREW model is the weakest. 
 A CREW PRAM can execute any EREW PRAM algorithm in the same time. This is 

obvious, as the concurrent read facility is not used.
 Similarly, a CRCW PRAM can execute any EREW PRAM algorithm in the same amount 

of time.

The PRIORITY PRAM model is the strongest.
 Any algorithm designed for the COMMON PRAM model will execute in the same time 

complexity in the ARBITRARY or PRIORITY PRAM models. 
 If the processors writing to the same location write the same value choosing an arbitrary processor would cause 

the same result.

 Likewise, it also produces the same result when the processor with the lowest index is chosen the winner.

Because the PRIORITY PRAM model is stronger than the EREW PRAM 
model, an algorithm to solve a problem on the EREW PRAM can have 
higher time complexity than an algorithm solving the same problem on 
the PRIORITY PRAM model. 
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COLE’S RESULT ON SORTING ON EREW 
PRAM

Cole [1988] A p-processor EREW PRAM can sort a p-element array 
stored in global memory in Θሺlog .time	ሻ݌

How can we use this to simulate a PRIORITY CRCW PRAM on an 
EREW PRAM model?
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SIMULATING PRIORITY-CRCW ON EREW
Concurrent write operations take constant time on a p-processor 
PRIORITY PRAM.
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a) Processors 
P1, P2, P4 
attempt to 
write values 
to memory 
locations M3. 
P1 wins, as it 
has least 
index. P3 
and P5 
attempts to 
write at M7. 
P3 wins.

b) Simulating 
Concurrent write on 
the EREW PRAM 
model.
Each processor 
writes 
(address,processor
number) to a global 
array T. 
The processors sort T 
in Θሺlog 	.ሻ݌
In constant time, the 
processors can set 1 
in those indices in S 
which corresponds to 
winning processors.

Processor P1 reads memory location T1, retrieves (3,1) and writes 1 to S1. 
P2 reads T2, ie. (3,2), and then reads T1 ie. (3,1). Since the first arguments 
match, it flags S2=0. Likewise for the rest. Thus the highest priority 
processor accessing any particular location can be found in constant 
time. 
Finally, the winning processors write their values. 
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IMPLICATION 

A p-processor PRIORITY PRAM can be simulated by a p-processor 
EREW PRAM with time complexity increased by a factor of Θሺlog 	.ሻ݌
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PRAM ALGORITHMS
PRAM algorithms work in two phases:

First phase: a sufficient number of processors are activated.

Second phase: These activated processors perform the computation in 
parallel.

Given a single active processor to begin with it is easy to see that 
logڿ .activation steps are needed to activate p processorsۀ݌

14

Meta-Instruction in the PRAM 
algorithms:
spawn (<processor names>)
To denote the logarithmic time 
activation of processors from a 
single active processor. 



27‐07‐2015

8

SECOND PHASE OF PRAM ALGORITHMS

To make the programs of the second phase of the PRAM algorithms 
easier to read, we allow references to global registers to be array 
references.

We assume there is a mapping from these array references to 
appropriate global registers.

The construct 

for all <processor list> do <statement list> endfor

denotes a code segment to be executed in parallel by all the specified 
processors.

Besides the special constructs already described, we express PRAM 
algorithms using familiar control constructs: if…then….else…endif, 
for…endfor, while…endwhile, and repeat…until. The symbol  denotes 
assignment.

15

PARALLEL REDUCTION

The binary tree is one of the most important paradigms of parallel 
computing.

In the algorithms that we refer here, we consider an inverted binary 
tree.
 Data flows from the leaves to the root. These are called fan-in or reduction 

operations.

More formally, given a set of n values a1, a2, …, an and an 
associative binary operator ⊕, reduction is the process of computing 
ܽ1⊕ ܽ2⊕⋯⊕ܽ݊. 
 Parallel Sum is an example of a reduction operation.

16
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PARALLEL SUMMATION IS AN EXAMPLE 
OF REDUCTION 

How do we write the PRAM 
algorithm for doing this 
summation?

17

GLOBAL ARRAY BASED EXECUTION

The processors in a PRAM 
algorithm manipulate data 
stored in global registers.

For adding n numbers we 

spawn ہ
௡

ଶ
ۂ processors.

Consider the example to 
generalize the algorithm.

18

P0 P1 P2 P3 P4

P0 P2

P0

P0

j=0

j=1

j=2

j=3
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GLOBAL ARRAY BASED EXECUTION

Each addition corresponds 
to:

A[2i]+A[2i+2j].

Note, the processor which is 
active has an i such that:      
i mod 2j=0 (ie. keep only 
those processors active).

Also check that the array 
does not go out of bound.
 ie, 2i+2j<n

19

P0 P1 P2 P3 P4

P0 P2

P0

P0

j=0

j=1

j=2

j=3

EREW PRAM PROGRAM

20
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COMPLEXITY

The SPAWN routine requires ݃݋݈ڿ
௡

ଶ
ۀ doubling steps.

The sequential for loop executes ڿlog ۀ݊ times.
 Each iteration takes constant time.

Hence overall time complexity is Θሺlog ݊ሻ given n/2 processors.

21

PREFIX SUM

Given a set of n values a1, a2, …, an, and an associative operation 
⊕, the prefix sum problem is to calculate the n quantities:

a1,

a1 ⊕ a2,

…

a1 ⊕ a2 ⊕ … ⊕ an

22
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AN APPLICATION OF PREFIX SUM

We are given an array A of n 
letters. We want to pack the 
uppercase letters in the initial 
portion of A while maintaining their 
order. The lower case letters are 
deleted.

a) Array A contains both uppercase 
and lowercase letters. We want to 
pack uppercase letters into 
beginning of A. 

b) Array T contains a 1 for every 
uppercase letter, and 0 for 
lowercase.

c) Array T after prefix sum. For 
every element of A containing an 
uppercase letter, the corresponding 
element of T is the element’s index 
in the packed array.

d) Array A after packing.

23

GLOBAL ARRAY BASED EXECUTION IN 
EREW
There are n-1 processors 
activated.

Each one accesses A[i], then 
accesses A[i-2j], where j is the 
depth (j varies from 0 to 
logڿ ۀ݊ െ 1.

Of course, the bounds need to 
be checked. 

24



27‐07‐2015

13

THE PRAM PSEUDOCODE

25

COMPLEXITY

Running time is   t(n) = (lg n)

Cost is   c(n) = p(n)  t(n) = (n lg n)

Note not cost optimal, as RAM takes (n)

26
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MAKING THE ALGORITHM COST OPTIMAL

Example Sequence – 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Use  n / lg n PEs with lg(n) items each

0,1,2,3   4,5,6,7   8,9,10,11   12,13,14,15

STEP 1: Each PE performs sequential prefix sum

0,1,3,6   4,9,15,22   8,17,27,38   12,25,39,54

STEP 2: Perform parallel prefix sum on last nr. in PEs

0,1,3,6 4,9,15,28 8,17,27,66 12,25,39,120

Now prefix value is correct for last number in each PE

STEP 3: Add last number of each sequence to incorrect sums in next 
sequence (in parallel)

0,1,3,6 10,15,21,28 36,45,55,66 78,91,105,120

27

A COST-OPTIMAL EREW ALGORITHM 

In order to make the prefix algorithm optimal, we must reduce 
the cost by a factor of lg n.

We reduce the nr of processors by a factor of lg n (and check 
later to confirm the running time doesn’t change).

Let k = lg n and m = n/k

The input sequence X = (x0, x1, ..., xn-1) is partitioned into m 
subsequences Y0, Y1 , ... ., Ym-1 with k items in each subsequence.
 While Ym-1 may have fewer than  k items, without loss of 
generality (WLOG) we may assume that it has k items here.

Then all sequences have the form,
Yi = (xi*k, xi*k+1, ..., xi*k+k-1) 

28
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PRAM ALGORITHM OUTLINE

Step 1: For 0  i < m, each processor Pi computes the prefix 
computation of the sequence Yi = (xi*k, xi*k+1, ..., xi*k+k-1) using 
the RAM prefix algorithm (using ) and stores prefix results as 
sequence si*k, si*k+1, ... , si*k+k-1.

Step 2: All m PEs execute the preceding PRAM prefix algorithm 
on the sequence (sk-1, s2k-1 , ... , sn-1) 
 Initially Pi holds si*k-1
 Afterwards Pi places the prefix sum sk-1  ...  sik-1 in sik-1

Step 3: Finally, all  Pi for 1im-1 adjust their partial value 
sums for all but the final term in their partial sum subsequence 
by performing the computation

sik+j  sik+j  sik-1
for 0  j  k-2.

29

COMPLEXITY ANALYSIS

Analysis:
 Step 1 takes O(k) = O(lg n)  time.
 Step 2 takes (lg m) = (lg n/k) 

= O(lg n- lg k) = (lg n - lg lg n)  
= (lg n)

 Step 3 takes O(k) = O(lg n) time 
 The running time for this algorithm is (lg n).
 The cost is ((lg n)  n/(lg n)) = (n) 
 Cost optimal, as the sequential time is O(n)

Can you write the complete pseudocode in the 
PRAM model?

30
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BROADCASTING ON A PRAM

“Broadcast” can be done on CREW PRAM in O(1) steps:
 Broadcaster sends value to shared memory
 Processors read from shared memory

Requires lg(P) steps on EREW PRAM.

M

PPPPPPPP

B

CONCURRENT WRITE – FINDING MAX

Finding max problem
 Given an array of n elements, find the maximum(s)
 sequential algorithm is O(n)

Data structure for parallel algorithm
 Array A[1..n]
 Array m[1..n].  m[i] is true if A[i] is the maximum
 Use n2 processors

Fast_max(A, n)
1.for i = 1 to n do, in parallel
2. m[i] = true // A[i] is potentially maximum
3.for i = 1 to n, j = 1 to n do, in parallel
4. if A[i] < A[j] then
5. m[i] = false
6.for i = 1 to n do, in parallel
7. if m[i] = true then max = A[i]
8.return max

Time complexity: O(1) 
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CONCURRENT WRITE – FINDING MAX

Concurrent-write
 In step 4 and 5, processors with A[i] < A[j] write the same value ‘false’ into the same 

location m[i]
 This actually implements m[i] = (A[i]  A[1])  …  (A[i]  A[n]) 

Is this work efficient? 
 No, n2 processors in O(1) 
 O(n2) work vs. sequential algorithm is O(n)

What is the time complexity for the Exclusive-write? 
 Initially elements “think” that they might be the maximum
 First iteration: For n/2 pairs, compare. 
 n/2 elements might be the maximum.

 Second iteration: n/4 elements might be the maximum.
 log n th iteration: one element is the maximum.

 So Fast_max with Exclusive-write takes O(log n).

O(1) (CRCW) vs. O(log n) (EREW)

CRCW VERSUS EREW - DISCUSSION

CRCW
 Hardware implementations are expensive
 Used infrequently
 Easier to program, runs faster, more powerful.
 Implemented hardware is slower than that of EREW
 In reality one cannot find maximum in O(1) time

EREW
 Programming model is too restrictive
 Cannot implement powerful algorithms

So, CREW is the most popular parallel model.


