
26‐07‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY 

DEBDEEP MUKHOPADHYAY
AND 

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

PARALLEL THINKING:
THE SIEVE OF ERATOSTHENES

2



26‐07‐2015

2

THE SIEVE OF ERATOSTHENES
Classic prime finding algorithm:
 Want to find the number of primes less than or equal to some positive integer n.

 A prime has exactly two factors: itself and one.

 The Sieve of Eratosthenes begins with a list of natural numbers 2, 3, 4, …, n, and 
removes composite numbers from the list by striking multiples of 2, 3, 5, and successive 
primes. The sieve terminates after multiples of the largest prime less than or equal to √݊
have been struck.

3

a) Prime is next unmarked natural number-
ie. 2

b) Strike all multiples of 2, starting with 22

c) Prime is next unmarked natural number-
ie. 3

d) Strike all multiples of 3, starting with 32

e) Prime is next unmarked natural number-
ie. 5

f) Strike all multiples of 5, starting with 52

g) Prime is next unmarked natural number-
ie. 7. Since 72 is greater than n=30, 
algorithm terminates. All unmarked 
natural numbers are also prime.

FEW POINTS ON THE SEQUENTIAL 
ALGORITHM

The Sieve of Eratosthenes is impractical for testing primality of 
numbers with hundreds of digits.
 The time complexity of the algorithm is Ω(n), and n increases exponentially with the 
number of digits.

 However modern sieving techniques use the sieving techniques through other 
suitable manipulations.

A sequential implementation of the Sieve of Eratosthenes manages 3 
key data structures:
 An array whose elements correspond to the natural numbers being sieved.

 An integer corresponding to latest prime number found.

 An integer used as a loop index, incremented as multiples of the latest (current) 
prime are marked as composite.

4



26‐07‐2015

3

SHARED MEMORY MODEL FOR PARALLEL 
ERATOSTHENES ALGORITHM

Control Parallel Approach:
 Every processor goes through the two step process of finding the next prime number

 Striking from the list multiples of that prime, beginning with its square.

 The processors continue until a prime is found whose value is greater than √݊

5

Shared Memory 
Model:
(a) Sequential 
algorithm 
maintains array 
of natural 
numbers, 
variable storing 
current prime, 
and index

Parallel Model:
(b) Each 
processor has its 
own private loop 
index and shares 
access to other 
variables with all 
processors.

INEFFICIENCIES

Two processors may asynchronously end up using the same prime to sieve.
 The first processor will access the value of the current prime and start sieving with it.

 The second processor will start from the next unmarked cell, which it updates as the current 
prime.

 If another processor starts before this update then it also starts sieving with the same prime.

Also a processor may end up sieving with composite numbers!
 The first processor starts sieving with multiples of 2.

 Before it marks any cell, a second processor starts sieving with the next prime, which is 3.

 A third processor starts sieving with the next unmarked cell, which is 4 (and has not been 
marked yet by the first processor)!

Our implementations hence needs to ensure that these time wasting 
situations do not happen. 

6



26‐07‐2015

4

ESTIMATING THE MAX SPEEDUP

Assumptions:

1. The above situations do not occur.

2. Ignore the time spent finding the next prime, and concentrate on the 
operations of marking the cells.

First analyze the sequential algorithm:

7

ESTIMATING THE MAX SPEEDUP

Assume it takes one unit of time for a processor to mark a cell.

Suppose there are k primes less than or equal to √݊

Denote them by ߨଵ, ,ଶߨ … , ௞ߨ . Thus, ଵߨ ൌ 2, ଶߨ ൌ 3, ଷߨ ൌ 5,…

The total time required by a single processor is:

	 		
௡ାଵ ିగభ

మ

గభ
൅

௡ାଵ ିగమ
మ

గమ
+

௡ାଵ ିగయ
మ

గయ
൅ ⋯൅

௡ାଵ ିగೖ
మ

గೖ
=

௡ିଷ

ଶ
൅

௡ି଼

ଷ
+

௡ିଶସ

ହ
൅ ⋯൅

௡ାଵ ିగೖ
మ

గೖ

For n=1000, the sum is 1,411.

8



26‐07‐2015

5

TIME TAKEN BY THE PARALLEL 
ALGORITHM

9

Time reduction with addition of 
processors (n=1000):
a) Single Processor strikes out all 

composite numbers in 1,411 
units of time.

b) Two processors reduce the 
execution time to 706 units of 
time. This corresponds to a 
speedup of 1411/706=2

c) Three processors reduce the time 
to 499 time units, which leads to 
speedup of 2.83.

Note adding more processors does 
not help here, because with more 
than 2 processors the time required 
to sieve all multiples of 2 
determine the parallel execution 
time.

DATA PARALLEL APPROACH

Let us consider another approach.

In this case, the approach is data parallel: that is different processor 
elements perform the same operation on different data sets.
 Each processor will be responsible for a segment of the array representing the 

natural numbers.

 All the processors perform the same operation (ie. strikes off multiples of the same 
prime) on its own segment of data.

Analyzing the speedup is straight-forward and is left as an exercise.

10



26‐07‐2015

6

MODEL WITH NO SHARED MEMORY:
MESSAGE PASSING PARADIGM 

Consider a different model for parallel computing:
 There is no shared memory

 Processors interact by message passing

11

Shared Memory 
Model:
(a) Sequential 
algorithm 
maintains array 
of natural 
numbers, 
variable storing 
current prime, 
and index

Parallel Model:
(b) Each processor has 
its own copy of the 
variables containing 
the current prime and 
the loop index.
Processor 1 finds prime 
and communicates them 
to other processors. 
Each processor iterates 
through its own portion 
of the array.

Assume the number of processors p<< .࢔ Thus the list controlled by the first processor has all 
primes less than √࢔ and the first prime greater than √࢔. Termination of the program happens when 
processor 1 reaches a prime greater than ࢔

ANALYSIS

We need to consider the time spent communicating the value of the current prime 
from processor 1 to all other processors.

Assume it takes ߯ time units for a processor to mark a multiple of a prime as being 
a composite number.

Suppose there are k primes as before, less than or equal to ݊. 

Computation Time:

The total time a processor spends striking out composite numbers is:

ڿ ೙
೛
ۀ

ଶ
൅

ڿ ೙
೛
ۀ

ଷ
+

ڿ ೙
೛
ۀ

ହ
൅ ⋯൅

ڿ ೙
೛
ۀ

గೖ
߯

Communication Time: Assume each time processor 1 finds a new prime it 
communicates the value to each of the (p-1) processors in turn.

If processor 1 spends ߣ amount of time it passes a number to another process, 
total communication time for k primes is kሺp െ 1ሻߣ.

12



26‐07‐2015

7

ANALYSIS FOR N=1,000,000

It turns out there are 168 primes less than 1,000 (square root of 106).

The largest is 997.

Therefore maximum computation time:

ڿ భ,బబబ,బబబ
೛

ۀ

ଶ
൅

ڿ భ,బబబ,బబబ
೛

ۀ

ଷ
+

ڿ భ,బబబ,బబబ
೛

ۀ

ହ
൅ ⋯൅

ڿ భ,బబబ,బబబ
೛

ۀ

ଽଽ଻
߯

Total Communication Time:168(p-1)ߣ

Assume ߣ ൌ 100߯ and lets plot the speedup. 

13

ESTIMATED SPEEDUP

Note that speedup is not directly 
proportional to the number of 
processors used.

Speedup is highest at 11 
processors.

Why does the decline in 
speedup happen?

14



26‐07‐2015

8

COMPUTATION TIME, COMMUNICATION 
TIME AND PROCESSORS
Computation time is inversely proportional with the number of 
processors.

Communication time increases linearly with the number of processors.

After 11 processors, increase in communication time is greater than the 
decrease in computation time. 

15

DATA PARALLEL APPROACH WITH I/O

The algorithms also need to store and print their results before 
termination.

Let us consider the data parallel implementation of the sieving method 
with an output on the shared memory model for parallel computation.

16

Let ݅ߚ denote the time required for a 
processor to transmit i prime numbers 
to that device.

There are 78,498 primes less than 
1,000,000. 
Thus the time for the I/O is 78,498ߚ.



26‐07‐2015

9

SPEEDUP ANALYSIS

17

Assuming, 		ߚ ൌ ߯ we plot the 
speedup. 
The plot shows the variation of 
speedup for 1,2, …, 32 processors.
There is a damping effect on the 
speedup.
This is because the output to the 
I/O device must be performed 
sequentially.

I/O time is a part of the 
operation which does not 
depend on the number of 
processors

AMDAHL’S LAW

Let, f be the fraction of operations in a computation that must be 
performed sequentially, where 0≤f≤1

Maximum speedup S achievable by a parallel computer with p 
processors is: 

ଵ

௙ାሺଵି௙ሻ/௣

18



26‐07‐2015

10

APPLYING AMDAHL’S LAW

When n=1,000,000 the sequential algorithm marks 2,122,048 cells 
and outputs 78,498 primes.

Assuming both these operations take same amount of time, total time 
required is 2,122,048+78,498=2,200,546.

Thus, f=78,498/2,200,546=0.0357.

Thus, the upper bound on the speedup with p processors is: 
ଵ

.଴ଷହ଻ା.ଽ଺ସଷ/௣

The dotted curve in the speedup plot, shows this upper bound for 
different values of p. 

19

AMDAHL EFFECT

As the size of the problem increases, the fraction f of inherently 
sequential operation decreases.
 This phenomenon is called as Amdahl Effect.

An ameliorating fact: This makes the problem more amenable for 
parallelization.

20

Plot of f with n for the data-parallel 
sieve algorithm with output, assuming 
ߚ ൌ ߯.



26‐07‐2015

11

QUESTION

21

Shuffle a deck of cards and then determine how long it takes to sort the cards as 
above. Assume it is faster to sort the cards initially by suit, and then by an 
insertion sort to arrange each suit.
1. How long does it take for p people to sort p decks of shuffled cards?
2. How long does it take p people to sort one deck of cards?


