
CS60026: Parallel and Distributed Algorithms
Autumn 2016-17

Programming Assignment-1

Abstract. This assignment is aimed to familiarize you with OpenMP
programming and for you to try out the various programming constructs
taught in the class to see their effect on the execution time in multi-core
environments. The problem that you are expected to solve in this assign-
ment is embarrassingly parallel, that is, it is very obviously amenable to
parallelization. At the same time, it provides a useful insight into the
paradigms of hands-on parallel programming that a developer should
keep in mind.

1 Sparse Matrices

In numerical analysis, a sparse matrix is a matrix in which most of the elements
are zero. By contrast, if most of the elements are nonzero, then the matrix
is considered dense. The number of zero-valued elements divided by the total
number of elements (m × n for a m × n matrix) is called the sparsity of the
matrix (which is essentially equal to 1 minus the density of the matrix). The
concept of sparsity is useful in several engineering applications, which makes
them relevant to us.

When storing and manipulating sparse matrices on a computer, it is benefi-
cial and often necessary to use specialized algorithms and data structures that
take advantage of the sparse structure of the matrix. Operations using standard
dense-matrix structures and algorithms are slow and inefficient when applied to
large sparse matrices as processing and memory are wasted on the zeros. Sparse
data is by nature more easily compressed and thus require significantly less stor-
age. Some very large sparse matrices are infeasible to manipulate using standard
dense-matrix algorithms.

2 Data Structure for Sparse Matrices

In this assignment, we assume n × n square matrices that are stored in a row-
compressed fashion. A description of row-compressed sparse matrices is provided
below. Note that an analogous storage in a column-compressed fashion may be
easily realized.

A row-compressed n× n sparse matrix consists of three arrays :

1. rowPtr: A Row Pointer is an integer array of size n + 1
2. colInd: A Column Index is an integer array of size numNonZeros, where

numNonZeros is the total number of non-zero entries in the matrix

3. nnz: Non-Zeros is integer/float/double array of size numNonZeros

The Row Pointer and Columns Index arrays define the structure of the sparse
matrix, while the Non-Zeros array contains the numerical entries.

The non-zeros in row i of the matrix can be accessed as follows :

– Find the starting column index colStart = rowPtr[i] and the last col-
umn index colEnd = rowPtr[i+1]-1

– For every j in [colStart, colEnd], nnz[j] is a non-zero entry at row
i and column colInd[j]

3 Matrix-Vector Multiplication

Multiplication of an n× n matrix A with an n× 1 vector x to get the vector y
can be described in terms of n dot-products of vectors. For 1 ≤ i ≤ n, let ri =
A(i, :), the ith row of A. Then yi = dot-product(ri, x).

4 Your Tasks:

The assignment folder contains an incomplete program spmv.cc and a matrices
directory with 4 different sparse matrices.

1. Implement the serial version of sparse matrix-vector multiply in the mul-
tiply(...) function.

2. Implement a parallel version of multiply(...) using OpenMP.

3. Run your program on the 4 matrices provided in the matrices directory of
the assignment folder.

4. Try different scheduling methods and find the one which produces the best
multi-threaded scaling. You are expected to run your program with 1, 2, · · · , 24
threads and observe the performance scaling with the number of threads.

5. Write a short report with scaling charts for the different scheduling methods
tried by you. Explain the result with emphasis on why a particular scheduling
method works better than the others. How is it related to the type of sparse
matrices provided in this assignment? Would the scaling performance turn
out to be different for some other type of sparse matrices?

5 Submission Details

You are expected to submit a tar ball comprising of the completed code and
your report. Submission deadline and site will be intimated soon. Enjoy!

2

