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Objectives

Understand the definition of Perfect 
Secrecy

 Prove that a given crypto-sytem is 
perfectly secured

 One Time Pad
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Unconditional Security

Concerns the security of cryptosystems 
when the adversary has unbounded 
computational power, that is has infinite 
resources.

Cipher-text only Attack: Attack the cipher 
using the cipher texts only.

When is a cipher is unconditionally 
secured? 

A priori and A posteriori Probabilities

 The plain-text has a probability 
distribution

 pP(x): A priori probability of a plain text
 The key also has a probability 

distribution
 pK(K): A priori probability of the key. 
 The cipher text is generated by applying 

the encryption function. Thus y=eK(x) is 
the cipher text.

Note, that the plain text and the key are 
independent distributions.
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Attacker wants to compute a 
posteriori probability of plain text

 The probability distributions on P and K, induce 
a probability distribution on C, the cipher text. 

 For a key K, CK(x)={eK(x): x Є P}

 Does the cipher text leak information about the 
plain text?

Given, the cipher text y, we shall compute 
the a posteriori probability of the plain text, ie. 
pP(x|y) and see whether it matches with that of 
the a priori probability of the plain text.

Example

 P={a,b}; pP(a)=1/4, pP(b)=3/4
 K={K1,K2}, pK(K1)=1/2, pK(K2)= pK(K3)=1/4
 C={1,2,3,4}. What the a posteriori probabilities 

of the plain text, given the cipher texts from C?
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Example
pC(1)=pP(a)pK(K1)    

=(1/4).(1/2)=1/8

pC(3)=pP(a)pK(K3) +pP(b) 
pK(K2)        
=(1/4)(1/4)+(3/4)(1/4)=1/1
6+3/16=1/4

Likewise I can compute the 
other probabilities…
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Example
 pP(a|1)=1;pP(b|1)=0
 pP(a|2)=?
 The ‘2’ can come when 

the plain text was ‘a’ and 
the key was ‘K2’ or when  
the plain text was ‘b’ and 
the key was ‘K1’

 Given ‘2’, we need to 
compute the probability 
that it came from ‘a’.

 Is it that of choosing K2? 
No.
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4
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Example
 Given ‘2’, we need to 

compute the probability 
that it came from ‘a’.

 The ‘2’ can appear with a 
probability:
 by having ‘a’ as the PT 

and K2 as the key: 
(1/4)(1/4)=1/16

 by having ‘b’ as the PT 
and K1 as the key: 
(3/4)(1/2)=6/16

 pP(a|2)=(1/16)/(7/16)=1/7
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Generalization of the Example
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Perfect Secrecy

 A Cryptosystem has perfect secrecy if         
pP(x|y)=pP(x) for all x Є P, y Є C. 

 That is the a posteriori probability that 
the plaintext is x, given that the cipher 
text y is observed, is identical to the a 
priori probability that the plaintext is x.  

Shift Cipher has perfect 
secrecy

 Suppose the 26 keys in the Shift Cipher 
are used with equal probability 1/26. 
Then for any plain text distribution, the 
Shift Cipher has perfect secrecy.

Note that P=K=C=Z26 and for 0≤K≤25

 Encryption function: y=eK(x)=(x+k)mod
26



7

Perfect Secrecy
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Theorem

 Suppose (P,C,K,E,D) be a cryptosystem, 
where |K|=|C|=|P|. The cryptosystem 
offers perfect secrecy if and only if every 
key is used with probability 1/|K|, and for 
every xЄP and every y ЄC, there is a 
unique key, such that y=eK(x).
 Perfect Secrecy (equivalent): pC(y|x)=pC(y)

 Thus if Perfect Secret, a scheme has to 
follow the above equation.
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Cryptographic Properties

 pC(y|x)>0
 This means that for every cipher text, 

there is a key, K, st. y=EK(x)
 Thus |K|≥|C|. In our case, |K|=|C|
 Thus, there is no cipher text, y, for which 

there are two keys which take them to 
the same plaintext.

 There is exactly one key, such that 
y=EK(x)

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101000100111010001100010000001

reltihlieh

101110001111110110001100101110

000110101000100111101110101111

rshtsshlrs

Encryption: Plaintext  Key = Ciphertext

Plaintext:
Key:

Ciphertext:
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One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

101000100111010001100100010011

000110101000100111101000111101

reltihllik

Ciphertext:
“key”:

“Plaintext”:

Suppose a wrong key is used to decrypt:

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

000011010110000011010100000001

101101011001110101011000101111

ekisekileh

Ciphertext:
“Key”:

“Plaintext”:

And this is the correct key:
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Unconditionally secured scheme

For a given ciphertext of same size 
as the plaintext, there is a equi-probable 
key that produces it. Thus the scheme is 
unconditionally secured.

Practical Problems

 Large quantities of random keys are 
necessary.

 Increases the problem of key 
distribution.

 Thus we will continue to search for 
ciphers where one key can be used to 
encrypt a large string of data and still 
provide computational security.
 Like DES (Data Encryption Standard)
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One-time Pad Summary

 Provably secure, when used correctly
 Cipher-text provides no information about 

plaintext
 All plaintexts are equally likely
 Pad must be random, used only once
 Pad is known only by sender and receiver
 Pad is same size as message
 No assurance of message integrity

Why not distribute message the same way 
as the pad?

Assignment 1

 Let n be a positive integer. A Latin 
square of order n is an nxn array L with 
integers 1,2,…,n such that every integer 
occurs exactly once in each row and 
column. An example for n=3 is:

132

213

321
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Assignment 1

Given any Latin square of order n, we 
can define a related cryptosystem, 
ei(j)=L(i,j), where 1≤i,j≤n. 

Prove from the computation of 
probabilities that the Latin square 
cryptosystem achieves perfect secrecy.


