
1

Shannon’s Theory

Debdeep Mukhopadhyay

IIT Kharagpur

Objectives

Understand the definition of Perfect 
Secrecy

 Prove that a given crypto-sytem is 
perfectly secured

 One Time Pad
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Unconditional Security

Concerns the security of cryptosystems 
when the adversary has unbounded 
computational power, that is has infinite 
resources.

Cipher-text only Attack: Attack the cipher 
using the cipher texts only.

When is a cipher is unconditionally 
secured? 

A priori and A posteriori Probabilities

 The plain-text has a probability 
distribution

 pP(x): A priori probability of a plain text
 The key also has a probability 

distribution
 pK(K): A priori probability of the key. 
 The cipher text is generated by applying 

the encryption function. Thus y=eK(x) is 
the cipher text.

Note, that the plain text and the key are 
independent distributions.
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Attacker wants to compute a 
posteriori probability of plain text

 The probability distributions on P and K, induce 
a probability distribution on C, the cipher text. 

 For a key K, CK(x)={eK(x): x Є P}

 Does the cipher text leak information about the 
plain text?

Given, the cipher text y, we shall compute 
the a posteriori probability of the plain text, ie. 
pP(x|y) and see whether it matches with that of 
the a priori probability of the plain text.

Example

 P={a,b}; pP(a)=1/4, pP(b)=3/4
 K={K1,K2}, pK(K1)=1/2, pK(K2)= pK(K3)=1/4
 C={1,2,3,4}. What the a posteriori probabilities 

of the plain text, given the cipher texts from C?
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Example
pC(1)=pP(a)pK(K1)    

=(1/4).(1/2)=1/8

pC(3)=pP(a)pK(K3) +pP(b) 
pK(K2)        
=(1/4)(1/4)+(3/4)(1/4)=1/1
6+3/16=1/4

Likewise I can compute the 
other probabilities…
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Example
 pP(a|1)=1;pP(b|1)=0
 pP(a|2)=?
 The ‘2’ can come when 

the plain text was ‘a’ and 
the key was ‘K2’ or when  
the plain text was ‘b’ and 
the key was ‘K1’

 Given ‘2’, we need to 
compute the probability 
that it came from ‘a’.

 Is it that of choosing K2? 
No.
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4
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Example
 Given ‘2’, we need to 

compute the probability 
that it came from ‘a’.

 The ‘2’ can appear with a 
probability:
 by having ‘a’ as the PT 

and K2 as the key: 
(1/4)(1/4)=1/16

 by having ‘b’ as the PT 
and K1 as the key: 
(3/4)(1/2)=6/16

 pP(a|2)=(1/16)/(7/16)=1/7
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Generalization of the Example
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Perfect Secrecy

 A Cryptosystem has perfect secrecy if         
pP(x|y)=pP(x) for all x Є P, y Є C. 

 That is the a posteriori probability that 
the plaintext is x, given that the cipher 
text y is observed, is identical to the a 
priori probability that the plaintext is x.  

Shift Cipher has perfect 
secrecy

 Suppose the 26 keys in the Shift Cipher 
are used with equal probability 1/26. 
Then for any plain text distribution, the 
Shift Cipher has perfect secrecy.

Note that P=K=C=Z26 and for 0≤K≤25

 Encryption function: y=eK(x)=(x+k)mod
26
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Perfect Secrecy
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Theorem

 Suppose (P,C,K,E,D) be a cryptosystem, 
where |K|=|C|=|P|. The cryptosystem 
offers perfect secrecy if and only if every 
key is used with probability 1/|K|, and for 
every xЄP and every y ЄC, there is a 
unique key, such that y=eK(x).
 Perfect Secrecy (equivalent): pC(y|x)=pC(y)

 Thus if Perfect Secret, a scheme has to 
follow the above equation.
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Cryptographic Properties

 pC(y|x)>0
 This means that for every cipher text, 

there is a key, K, st. y=EK(x)
 Thus |K|≥|C|. In our case, |K|=|C|
 Thus, there is no cipher text, y, for which 

there are two keys which take them to 
the same plaintext.

 There is exactly one key, such that 
y=EK(x)

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101000100111010001100010000001

reltihlieh

101110001111110110001100101110

000110101000100111101110101111

rshtsshlrs

Encryption: Plaintext  Key = Ciphertext

Plaintext:
Key:

Ciphertext:
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One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

101000100111010001100100010011

000110101000100111101000111101

reltihllik

Ciphertext:
“key”:

“Plaintext”:

Suppose a wrong key is used to decrypt:

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

000011010110000011010100000001

101101011001110101011000101111

ekisekileh

Ciphertext:
“Key”:

“Plaintext”:

And this is the correct key:
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Unconditionally secured scheme

For a given ciphertext of same size 
as the plaintext, there is a equi-probable 
key that produces it. Thus the scheme is 
unconditionally secured.

Practical Problems

 Large quantities of random keys are 
necessary.

 Increases the problem of key 
distribution.

 Thus we will continue to search for 
ciphers where one key can be used to 
encrypt a large string of data and still 
provide computational security.
 Like DES (Data Encryption Standard)
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One-time Pad Summary

 Provably secure, when used correctly
 Cipher-text provides no information about 

plaintext
 All plaintexts are equally likely
 Pad must be random, used only once
 Pad is known only by sender and receiver
 Pad is same size as message
 No assurance of message integrity

Why not distribute message the same way 
as the pad?

Assignment 1

 Let n be a positive integer. A Latin 
square of order n is an nxn array L with 
integers 1,2,…,n such that every integer 
occurs exactly once in each row and 
column. An example for n=3 is:

132

213

321
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Assignment 1

Given any Latin square of order n, we 
can define a related cryptosystem, 
ei(j)=L(i,j), where 1≤i,j≤n. 

Prove from the computation of 
probabilities that the Latin square 
cryptosystem achieves perfect secrecy.


