Introduction
to
Number Theory
Debdeep Mukhopadhyay
Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

- Congruences: Modular Arithmetic
- Euler Totient Function
- Fermat's Little Theorem

Congruences

- We say that \mathbf{a} is congruent to b modulo m , and we write $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{m}$, if m divides $\mathrm{b}-\mathrm{a}$.
- Example: $-2 \equiv 19(\bmod 21), 20 \equiv 0(\bmod 10)$.
- Congruence modulo m is an equivalence relation on the integers.
- any integer is congruent to itself modulo m (reflexivity)
$-\mathbf{a} \equiv \mathbf{b} \bmod \mathrm{m}$, implies that $\mathbf{b} \equiv \mathbf{a} \bmod \mathrm{m}$ (symmetry)
$-\mathbf{a} \equiv \mathbf{b} \bmod \mathbf{m}$ and $\mathbf{b} \equiv \mathbf{c} \bmod \mathbf{m}$ implies $\mathbf{a} \equiv \mathbf{c} \bmod \mathbf{m}$ (transitivity)

The following are equivalent

- $\mathbf{a} \equiv \mathbf{b} \bmod \mathbf{m}$
- There is $k \varepsilon Z$, with $\mathbf{a}=\mathbf{b}+\mathbf{k m}$
- When divided by m, both a and bleave the same remainder.
- Equivalence Class of a modulo m consists of all integers that are obtained by adding a with integral multiples of m
- called residue class of a mod m

Example

- Residue class of $1 \bmod 4$:
$\left\{1,1 \pm 4,1 \pm 2^{*} 4,1 \pm 3^{*} 4, \ldots\right\}$
- The set of residue classes mod m is denoted by Z/mZ.
- it has m elements, $0,1, \ldots, m-1$
- this is called a complete set of incongruent residues (complete system)
- Examples for complete system for mod 5 is:
$\{0,1, \ldots, 4\},\{-12,-15,82,-1,31\}$ etc.

Theorem

- $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{m}$, and $\mathrm{c} \equiv \mathrm{d} \bmod \mathrm{m}$, implies that $-\mathrm{a} \equiv-\mathrm{b} \bmod \mathrm{m}, \mathrm{a}+\mathrm{c} \equiv \mathrm{b}+\mathrm{d} \bmod$, and $\mathrm{ac} \equiv \mathrm{bd} \bmod \mathrm{m}$.

Example

Prove that $2^{2^{5}}+1$ is divisible by 641 .

Note that: $641=640+1=5^{*} 2^{7}+1$.
Thus, $5^{*} 2^{7} \equiv-1 \bmod 641$.
$\Rightarrow\left(5^{*} 2^{7}\right)^{4} \equiv(-1)^{4} \bmod 641$
$\Rightarrow 5^{4}{ }^{2} 2^{28} \equiv 1 \mathrm{mod} 641$
$\Rightarrow(625 \bmod 641) * 2^{28} \equiv 1 \bmod 641$
$\Rightarrow\left(-2^{4}\right) * 2^{28} \equiv 1 \bmod 641$
$\Rightarrow 2^{32} \equiv-1 \bmod 641$

Semigroups

- If X is a set, a map $\circ: X x X \rightarrow X$, which transforms an element ($\mathrm{x}_{1}, \mathrm{x}_{2}$) to the element $\mathrm{x}_{1} \circ \mathrm{x}_{2}$ is called an operation.
- The sum of the residue classes $a+m Z$ and $b+m Z$ is $(a+b)+m Z$.
- The product of the residue classes $a+m Z$ and $b+m Z$ is (a.b)+mZ

Semigroups

- An operation \circ on X is associative if $(a \circ b) \circ \mathbf{c = a}$ $\circ(b \circ c)$, for all a, b, c in X.
- It is commutative if $\mathbf{a} \circ \mathbf{b}=\mathbf{b} \circ \mathbf{a}$ for all \mathbf{a}, \mathbf{b} in \mathbf{X}.
- A pair (H, \circ) consisting of a set H and an associative operation \circ on H is called a semigroup.
- The semigroup is called abelian or commutative if the operation \circ is commutative.
- Example: (Z,+), (Z,.), (Z/mZ,+), (Z/mZ, .)

Implications

- Let (H, \circ) be a semigroup.
- Set, $a^{1}=a, a^{n+1}=a \circ a^{n}$ for a in H and natural value of n.
- Thus, $a^{n} \circ a^{m}=a^{n+m},\left(a^{n}\right)^{m}=a^{n m}, a$ in H, n and m are natural values.
- If a, b are in H, and $a \circ b=b \circ a$, then:

$$
(\mathbf{a} \circ \mathbf{b})^{n}=\mathbf{a}^{\mathrm{n}} \circ \mathbf{b}^{\mathrm{n}}
$$

Monoid

- A neutral element of the semigroup (H, \circ) is an element \mathbf{e} in H , which satisfies $\mathbf{e} \circ \mathbf{a}=\mathbf{a} \circ \mathbf{e}=\mathbf{a}$, for all a in H .
- If the semigroup contains a neutral element it is called monoid.
- A semigroup has at most one neutral element.
- If e εH is a neutral element of the semigroup (H, \circ), then $b \varepsilon H$ is called an inverse of a if a \circ $\mathbf{b}=\mathbf{b} \circ \mathbf{a}=\mathbf{e}$.
- If a has an inverse, then a is called invertible in the semigroup H .
- In a monoid, each element has at most one inverse.

Examples

- (Z,+): Neutral element: 0, inverse: -a.
- (Z,.): Neutral element: 1, only invertible elements are +1 and -1.
- (Z/mZ,+): Neutral element: mZ, inverse: a+mZ. Often is referred as Z_{m}.
- (Z/mZ,.): Neutral element: 1+mZ, inverse: those elements, t which have $\operatorname{gcd}(\mathrm{t}, \mathrm{m})=1$

Groups

- A group is a monoid in which every element is invertible.
- The group is commutative or abelian if the monoid is commutative.
- Example:
$-(Z,+)$ is an abelian group.
$-(Z,$.$) is not a group.$
$-(Z / m Z,+)$ is an abelian group.

Residue class ring

- A ring is a triplet $(R,+,$.$) such that (R,+)$ is an abelian group and ($R,$.) is a monoid.
- In addition: $x .(y+z)=(x . y)+(x . z)$ for $x, y, z \varepsilon$ R.
- The ring is called commutative if the semigroup ($R,$.) is commutative.
- A unit element of the ring is a neutral element of the semigroup (R, .)

Unit Group

- Let R be a ring with unit element.
- An element a of R is called invertible or a unit, if it is invertible in the multiplicative semigroup of R.
- The element a is called a zero divisor if it is nonzero and there is a nonzero b in R, st. $\mathrm{ab}=0$ or $\mathrm{ba}=0$.
- Units of a commutative ring form a group. This is called the unit group of the ring, denoted by R^{*}.

Zero Divisors

- The zero divisors of the residue class Z / mZ is a + mZ , with $1<\operatorname{gcd}(\mathrm{a}, \mathrm{m})<\mathrm{m}$.
- Proof: If a+mZ is a zero divisor of Z / mZ, then there is an integer b with $\mathrm{ab} \equiv 0 \bmod \mathrm{~m}$, but neither a nor b is $0 \bmod m$. Thus, $m \mid a b$, but neither a nor $\mathrm{b}=>1<\mathrm{gcd}(\mathrm{a}, \mathrm{m})<\mathrm{m}$.
- Conversely, if $1<\operatorname{gcd}(\mathrm{a}, \mathrm{m})<\mathrm{m}$, then define $b=m / g c d(a, m)$, then both a and b are nonzero mod m . But $\mathrm{ab} \equiv 0(\bmod \mathrm{~m})$. Thus $\mathrm{a}+\mathrm{mZ}$ is a zero divisor of Z / mZ.
- Corollary: If p is prime, then $Z / p Z$ has no zero divisors.

Field

- A field is a commutative ring ($R,+,$.) in which every element in the semigroup $(R,$.$) is invertible.$
- Example:
- the set of integers is not a field.
- the set of real and complex numbers form a field.
- the residue class modulo a prime number except 0 is a field.

Euler's Totient function

- Suppose $a \geq 1$ and $m \geq 2$ are integers. If $\operatorname{gcd}(a, m)=1$, then we say that a and m are relatively prime.
- The number of integers in $Z_{m}(m>1)$, that are relatively prime to m and does not exceed m is denoted by $\boldsymbol{\Phi}(\mathrm{m})$, called Euler's Totient function or phi function.
- $\Phi(1)=1$

Example

- $m=26=>$ Ф(26)=13
- If p is prime, $\Phi(p)=p-1$
- If $\mathrm{n}=1,2, \ldots, 24$ the values of $\Phi(\mathrm{n})$ are:
- 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8, 12,10,22,8
- Thus we see that the function is very irregular.

Properties of Φ

- If \mathbf{m} and \boldsymbol{n} are relatively prime numbers,
$-\Phi(m n)=\Phi(m) \Phi(n)$
- $\Phi(77)=\Phi(7 \times 11)=6 \times 10=60$
- $\Phi(1896)=\Phi(3 \times 8 \times 79)=2 \times 4 \times 78$ =624
- This result can be extended to more than two arguments comprising of pairwise coprime integers.

Results

- If there are m terms of an arithmetic progression (AP) and has common difference prime to m , then the remainders form Z_{m}.
- An integer a is relatively prime to m , iff its remainder is relatively prime to m
- If there are \mathbf{m} terms of an AP and has common difference prime to m, then there are $\Phi(\mathrm{m})$ elements in the AP which are relatively prime to m .

An Important Result

- If \mathbf{m} and \boldsymbol{n} are relatively prime, $\Phi(\mathrm{mn})=\Phi(\mathrm{m}) \Phi(\mathrm{n})$

contd.

- Thus, there are $\Phi(n)$ columns with $\Phi(m)$ elements in each which are coprime to both m and n.
- Thus there are $\Phi(m) \Phi(n)$ elements which are co-prime to mn .
- This proves the result...

Further Result

- $\Phi\left(p^{a}\right)=p^{a}-p^{a-1}$
- Evident for $\mathrm{a}=1$
- For $a>1$, out of the elements $1,2, \ldots, p^{a}$ the elements $p, p^{2}, p^{\mathrm{a}-1} \mathrm{p}$ are not coprime to p^{a}.
Rest are co-prime.
Thus $\Phi\left(p^{a}\right)=p^{a}-p^{a-1}$

$$
=p^{a}(1-1 / p)
$$

contd.

- $\mathrm{n}=\mathrm{p}_{1}{ }^{\text {a1 }} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\text {ak }}$
- Thus, $\Phi(\mathrm{n})=\Phi\left(\mathrm{p}_{1}{ }^{\mathrm{a} 1}\right) \Phi\left(\mathrm{p}_{2}{ }^{\mathrm{a} 2}\right) \ldots \Phi\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{ak}}\right)$ $=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{k}\right)$

Thus, if $\mathbf{m}=60=4 \times 3 \times 5$

$$
\Phi(60)=60(1-1 / 2)(1-1 / 3)(1-1 / 5)=16
$$

Fermat's Little Theorem

- If $\operatorname{gcd}(a, m)=1$, then $a^{\Phi(m) \equiv 1(\bmod m) \text {. }}$
- Proof: $R=\left\{r_{1}, \ldots, r_{\Phi(m)}\right\}$ is a reduced system (mod m).
- If $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=1$, we see that $\left\{\mathrm{ar}_{1}, \ldots, \mathrm{ar}_{\Phi(\mathrm{m})}\right\}$ is also a reduced system $(\bmod m)$.
- It is a permutation of the set R.
- Thus, the product of the elements in both the sets are the same.
Hence, $a^{\Phi(m)} r_{1}, \ldots, r_{\Phi(m)} \equiv r_{1}, \ldots, r_{\Phi(m)}(\bmod m)$ $\Rightarrow \mathrm{a}^{\Phi(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$
Note we can cancel the residues as they are co-prime with m and hence have multiplicative inverse.

Example

- Find the remainder when 72^{1001} is divided by 31.
- Since, 72三10 (mod 31). Hence, 72^{1001}三10 ${ }^{1001}(\bmod 31)$.
- Now from Fermat's Theorem, $10^{30} \equiv 1(\bmod 31)$ [note 31 is prime]
- Raising both sides to the power 33, $10^{990} \equiv 1(\bmod 31)$
Thus,
$10^{1001}=10^{990} 10^{8} 10^{2} 10=1\left(10^{2}\right)^{4} 10^{2} 10=1(7)^{4} 7.10=49^{2} .7$. $10=(-13)^{2} \cdot 7 \cdot 10=(14 \cdot 7) \cdot 10=98 \cdot 10=5 \cdot 10=19(\bmod 31)$.

Points to Ponder

- Find the least residue of 7^{973} (mod 72) [Note 72 is not a prime number].

References

- S G Telang, "Number Theory", TMH
- Johannes A. Buchmann, "Introduction to Cryptography", Springer

Next Days Topic

- Probability and Information Theory

