
1

Introduction 
to 

Number Theory

Debdeep Mukhopadhyay

Assistant Professor

Department of Computer Science and 
Engineering

Indian Institute of Technology Kharagpur

INDIA -721302

Objectives

• Congruences: Modular Arithmetic

• Euler Totient Function

• Fermat’s Little Theorem
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Congruences

• We say that a is congruent to b modulo m, and we 
write a ≡ b mod m, if m divides b-a.

• Example: -2 ≡ 19 (mod 21), 20 ≡ 0 (mod 10).

• Congruence modulo m is an equivalence relation 
on the integers.
– any integer is congruent to itself modulo m (reflexivity)
– a ≡ b mod m, implies that b ≡ a mod m (symmetry)
– a ≡ b mod m and b ≡ c mod m implies a ≡ c mod m 

(transitivity) 

The following are equivalent

• a ≡ b mod m

• There is k ε Z, with a = b + km

• When divided by m, both a and b leave the 
same remainder.

• Equivalence Class of a modulo m consists 
of all integers that are obtained by adding 
a with integral multiples of m
– called residue class of a mod m
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Example

• Residue class of 1 mod 4:
{1, 1±4, 1±2*4, 1±3*4,…}

• The set of residue classes mod m is 
denoted by Z/mZ. 
– it has m elements, 0, 1, …, m-1

– this is called a complete set of incongruent 
residues (complete system)

– Examples for complete system for mod 5 is:
{0, 1, …, 4}, {-12, -15, 82, -1, 31} etc.

Theorem

• a≡b mod m, and c≡d mod m, implies 
that -a≡-b mod m, a + c ≡ b + d mod, 
and ac ≡ bd mod m.
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Example
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Prove that 2 1 is divisible by 641.

Note that: 641 = 640 + 1 = 5*2 1.

Thus, 5*2 1 mod 641.

(5*2 ) ( 1)  mod 641

5 *2 1 mod 641

(625 mod 641)*2 1 mod 641

( 2 )*2 1 mod 641

2 1 mod 641





 

  

 

 

  

  

Semigroups

• If X is a set, a map ○: X x X  X, 
which transforms an element (x1,x2) 
to the element x1 ○ x2 is called an 
operation.

• The sum of the residue classes a+mZ
and b+mZ is (a+b)+mZ.

• The product of the residue classes 
a+mZ and b+mZ is (a.b)+mZ
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Semigroups

• An operation ○ on X is associative if (a ○ b) ○ c=a 
○ (b ○ c), for all a, b, c in X. 

• It is commutative if a ○ b = b ○ a for all a, b in X.
• A pair (H, ○) consisting of a set H and an 

associative operation ○ on H is called a 
semigroup.

• The semigroup is called abelian or commutative if 
the operation ○ is commutative. 
– Example: (Z,+), (Z,.), (Z/mZ,+), (Z/mZ, .) 

Implications

• Let (H, ○) be a semigroup.

• Set, a1= a, an+1=a ○ an for a in H and 
natural value of n.

• Thus, an ○ am = an+m, (an)m=anm, a in H, 
n and m are natural values.

• If a, b are in H, and a ○ b=b ○ a, then:

(a ○ b)n=an ○ bn
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Monoid

• A neutral element of the semigroup (H, ○) is an 
element e in H, which satisfies e ○ a = a ○ e = a, 
for all a in H. 

• If the semigroup contains a neutral element it is 
called monoid. 

• A semigroup has at most one neutral element.
• If e ε H is a neutral element of the semigroup

(H, ○), then b ε H is called an inverse of a if a ○
b=b ○ a = e.

• If a has an inverse, then a is called invertible in 
the semigroup H.  

• In a monoid, each element has at most one 
inverse.

Examples

• (Z,+): Neutral element: 0, inverse: -a.

• (Z,.): Neutral element: 1, only invertible 
elements are +1 and -1.

• (Z/mZ,+): Neutral element: mZ, inverse: -
a+mZ. Often is referred as Zm. 

• (Z/mZ,.): Neutral element: 1+mZ, inverse: 
those elements, t which have gcd(t,m)=1
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Groups

• A group is a monoid in which every 
element is invertible.

• The group is commutative or abelian
if the monoid is commutative.

• Example:
– (Z,+) is an abelian group.
– (Z,.) is not a group. 
– (Z/mZ,+) is an abelian group.

Residue class ring

• A ring is a triplet (R, +, .) such that (R,+) is 
an abelian group and (R,.) is a monoid. 

• In addition: x.(y+z)=(x.y)+(x.z) for x, y, z ε
R. 

• The ring is called commutative if the 
semigroup (R,.) is commutative. 

• A unit element of the ring is a neutral 
element of the semigroup (R,.)
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Unit Group

• Let R be a ring with unit element. 
• An element a of R is called invertible or a 

unit, if it is invertible in the multiplicative 
semigroup of R. 

• The element a is called a zero divisor if it 
is nonzero and there is a nonzero b in R, 
st. ab = 0 or ba = 0. 

• Units of a commutative ring form a group. 
This is called the unit group of the ring, 
denoted by R*.

Zero Divisors

• The zero divisors of the residue class Z/mZ is a + 
mZ, with 1< gcd(a,m)<m.

• Proof: If a+mZ is a zero divisor of Z/mZ, then 
there is an integer b with ab≡0 mod m, but neither 
a nor b is 0 mod m. Thus, m|ab, but neither a nor 
b => 1<gcd(a,m)<m.

• Conversely, if 1<gcd(a,m)<m, then define 
b=m/gcd(a,m), then both a and b are nonzero mod 
m. But ab≡0 (mod m). Thus a+mZ is a zero divisor 
of Z/mZ.

• Corollary: If p is prime, then Z/pZ has no zero 
divisors. 
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Field

• A field is a commutative ring (R,+,.) in 
which  every element in the semigroup
(R,.) is invertible.

• Example: 
– the set of integers is not a field.

– the set of real and complex numbers form a 
field.

– the residue class modulo a prime number 
except 0 is a field.

Euler's Totient function

• Suppose a≥1 and m≥2 are integers. If 
gcd(a,m)=1, then we say that a and m 
are relatively prime. 

• The number of integers in Zm (m>1), 
that are relatively prime to m and 
does not exceed m is denoted by 
Φ(m), called Euler’s Totient function 
or phi function.

• Φ(1)=1
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Example

• m=26 => Φ(26)=13

• If p is prime, Φ(p)=p-1

• If n=1,2,…,24 the values of Φ(n) are:
– 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,

12,10,22,8

– Thus we see that the function is very 
irregular.

Properties of Φ
• If m and n are relatively prime 

numbers, 
– Φ(mn)= Φ(m) Φ(n)

• Φ(77)= Φ(7 x 11)=6 x 10 = 60

• Φ(1896)= Φ(3 x 8 x 79)=2 x 4 x 78 
=624

• This result can be extended to more 
than two arguments comprising of 
pairwise coprime integers. 
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Results
• If there are m terms of an arithmetic 

progression (AP) and has common 
difference prime to m, then the 
remainders form Zm.

• An integer a is relatively prime to m, 
iff its remainder is relatively prime to 
m

• If there are m terms of an AP and has 
common difference prime to m, then 
there are Φ(m) elements in the AP 
which are relatively prime to m.

An Important Result
• If m and n are relatively prime, 

Φ(mn)=Φ(m)Φ(n)

1 2        … k        … n

n+1                n+2       … n+k … n+n

…

(m-1)n+1     (m-1)n+2 … (m-1)n+k    … (m-1)n+n

there are Φ(m) 
elements which are 
co-prime to m

there are Φ(n) columns 
in which all the 
elements are co-prime 
to n.
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contd.

• Thus, there are Φ(n) columns with 
Φ(m) elements in each which are co-
prime to both m and n.

• Thus there are Φ(m) Φ(n) elements 
which are co-prime to mn.
– This proves the result…

Further Result

• Φ(pa)=pa-pa-1

– Evident for a=1

– For a>1, out of the elements 1, 2, …, pa

the elements p, p2, pa-1p are not co-
prime to pa. 

Rest are co-prime.

Thus Φ(pa)=pa-pa-1

=pa(1-1/p)
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contd.

• n=p1
a1p2

a2…pk
ak

• Thus, Φ(n)= Φ(p1
a1) Φ(p2

a2) … Φ(pk
ak)

=n(1-1/p1)(1-1/p2)…(1-1/pk)

Thus, if m=60=4x3x5

Φ(60)=60(1-1/2)(1-1/3)(1-1/5)=16

Fermat’s Little Theorem

• If gcd(a,m)=1, then aΦ(m)≡1 (mod m).
• Proof: R={r1,…,rΦ(m)} is a reduced system (mod 

m). 
• If gcd(a,m)=1, we see that {ar1,…,arΦ(m)} is also a 

reduced system (mod m).
• It is a permutation of the set R.
• Thus, the product of the elements in both the sets 

are the same.
Hence, aΦ(m) r1,…,rΦ(m) ≡ r1,…,rΦ(m)(mod m)

=> aΦ(m)≡1 (mod m)
Note we can cancel the residues as they are co-prime with 
m and hence have multiplicative inverse.
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Example

• Find the remainder when 721001 is divided by 31.
• Since, 72≡10 (mod 31). Hence,     721001 

≡101001(mod 31). 
• Now from Fermat’s Theorem, 1030 ≡1 (mod 31) 

[note 31 is prime]
• Raising both sides to the power 33, 

10990 ≡1 (mod  31)
Thus, 

101001=1099010810210=1(102)410210=1(7)47.10=492.7.
10=(-13)2.7.10=(14.7).10=98.10=5.10=19 (mod 31).

Points to Ponder

• Find the least residue of 7973 (mod 
72) [Note 72 is not a prime number].
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