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Modular Exponentiation

Exponentiation and Underlying Multiplication Primitive

I Inputs(M ) are encrypted and decrypted by performing modular
exponentiation with modulus N on public or private keys
represented as n bit binary string.

Algorithm 1: Binary version of Square and Multiply Exponentiation Algorithm

S ← M ;
for i from 1 to n− 1 do

S ← S ∗ S mod N ;
if di = 1 then

S ← S ∗M mod N ;
end

end
return S ;

I Conditional execution of instruction and their dependence on
secret exponent is exploited by the simple power and timing
side-channels.

March 19, 2018 Branch Prediction Attacks 3 / 54



Modular Exponentiation

Montgomery Ladder Exponentiation Algorithm

I A naïve modification is to have a balanced ladder structure
having equal number of squarings and multiplications.

I Most popular exponentiation primitive for Asymmetric-key
cryptographic implementations.

Algorithm 2: Montgomery Ladder Algorithm
R0 ← 1 ;
R1 ← M ;
for i from 0 to n− 1 do

if di = 0 then
R1 ← (R0 ∗ R1) mod N ;
R0 ← (R0 ∗ R0) mod N ;

end
else

R0 ← (R0 ∗ R1) mod N ;
R1 ← (R1 ∗ R1) mod N ;

end
end
return R0 ;
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Modular Exponentiation

Montgomery Multiplication Algorithm

I Highly efficient algorithm for performing modular squaring and
modular multiplication operation.

I Avoids time consuming integer division operation.
I R is assumed to be 2k, when N is k-bit number.
I Calculates Z = A ∗B ∗R−1(modN), A = a ∗R(modN),

B = b ∗R(modN) and R−1 ∗R = 1(modN).

Algorithm 3: Montgomery Multiplication Algorithm
S ← A ∗ B ;
S ← (S + (S ∗N−1 mod R) ∗N)/R ;
if S > N then

S ← S −N ;
end
return S ;
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Modular Exponentiation

Branch Predictor State Machines
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Modular Exponentiation

Modelling Branch Miss as Side-Channel from HPC

I We monitor the branch misses on the square and multiply
and Montgomery Ladder algorithm using Montgomery
multiplication as subroutine for operations like squaring and
multiplication.

I Branch miss rely on the ability of branch predictor to
correctly predict future branches to be taken.

I Profiling of HPCs using performance monitoring tools
provides simple user interface to different hardware event
counts and are considered as side-channel.
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1 Modular Exponentiation

2 Understanding Branch Mispredictions

3 Reverse engineering of branch predictors

4 Profiling the BPU Using Asynchronous Measurements

5 Acquire, Deduce and Remove

6 Experimental validation

March 19, 2018 Branch Prediction Attacks 8 / 54



Understanding Branch Mispredictions

Secret dependent branching

Let n-bit secret scalar in ECC be denoted as
(k0, k1, · · · , ki, · · · , kn−1). Trace of taken or not-taken branches
as conditioned on scalar bits and expressed as (b0, b1, · · · , bn−1).

I If a particular key bit kj is 1 then the conditional addition
statement in the double and add algorithm gets executed. Thus,
the condition is checked first, and if the particular key bit is set
then its immediate next statement ie, addition gets performed.
Since this is a normal flow of execution the branch is considered
as not-taken ie, bj = 0 in this case.

I While when kj = 0, the addition operation is skipped and the
execution continues with the next squaring statement. Thus, in
this case branch is taken ie, bj = 1.
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Understanding Branch Mispredictions

Effect of Compiler Optimizations on branching

I We validate our understanding for conditional branching and
observe the effect of optimization options in gcc:

1 .LC3 : .string hello
2 .LC4 : .string hi

Figure: Assembly generated using various optimization options in gcc
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Understanding Branch Mispredictions

Approximating the System predictor with 2-bit branch
predictor
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Figure: Variation of branch-misses from performance counters with increase in branch
miss from 2-bit predictor algorithm

I Direct correlation observed for the branch misses from HPCs and from the
simulated 2-bit dynamic predictor over a sample of exponent bitstream.

I This confirms assumption of 2-bit dynamic predictor being an approximation to
the underlying system branch predictor.
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Understanding Branch Mispredictions

Idea of the Attack

I Timing attack exploiting branch mispredictions are demonstrated which requires
the knowledge of actual structure of branch prediction hardware of the target
system.

I Advantage of this attack lies in the fact that adversary, inspite of having no
knowledge of the underlying architecture, can actually target real systems and
reveal secret exponent bits, exploiting the branch miss as side-channel from
HPCs.

I This is an iterative attack, targeting ith bit assuming previous bits to be known.
I The attack separates a sample input set based on mispredictions for conditional

reduction of Montgomery multiplication at the (i+ 1)th squaring step of
exponentiation assuming secret ith bit.
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Understanding Branch Mispredictions

Threat Model for the attack

I The attacker knows first i bits of the private key and wants
to determine next unknown bit di of the key
(d0, d1, · · · , di, · · · , dn−1).

I Generate a trace of branches as (tm,1, tm,2, · · · , tm,i) for
conditional reduction of Montgomery multiplication at every
squaring step.

I Under the assumption of di having value j, where
j ∈ {0, 1}, appropriate value of tjm,i+1 is simulated.
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Understanding Branch Mispredictions

Offline Phase of the Attack
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Understanding Branch Mispredictions

Separation of Random Inputs

1 M1 = {m|m does not cause a miss during MM of (i+ 1)th

squaring if di = 1}
2 M2 = {m|m causes a misprediction during MM of (i+ 1)th

squaring if di = 1}
3 M3 = {m|m does not cause a miss during MM of (i+ 1)th

squaring if di = 0}
4 M4 = {m|m causes a misprediction during MM of (i+ 1)th

squaring if di = 0}

We ensure that there must be no common ciphertexts in sets
(M1,M3) and (M2,M4) and the sets should be disjoint.
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Understanding Branch Mispredictions

Online Phase

The probable next bit is decided following the Algorithm 4.
I If(avg(MM2

) > avg(MM1
)) and (avg(MM4

) < avg(MM3
)), then

the next bit (nbi) = 1

I Otherwise, if (avg(MM4
) > avg(MM3

)) and
(avg(MM2

) < avg(MM1
)) then, next bit (nbi) = 0
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Understanding Branch Mispredictions

Algorithm 4: Adversary Attack Algorithm
Input: (d0, d1, · · · , di−1),M
Output: Probable next bit nbi
begin

Offline Phase;
for ∀m ∈ M do

Generate taken/ not-taken trace for input m as tm,1, tm,2, · · · , tm,i ;
Assume di = 0 and 1, generate t0m,i+1, t1m,i+1 respectively;
pm,i+1 = T (tm,1, tm,2, · · · , tm,i) ;
if pm,i+1 = t1m,i+1 then

Add m to M1 ;
end
else

Add m to M2 ;
end
if pm,i+1 = t0m,i+1 then

Add m to M3 ;
end
else

Add m to M4 ;
end

end
Remove Duplicate Ciphertexts in the sets M1,M3 and M2,M4;
Online Phase;
Observe distribution of branch misses from performance counters asMM1

,MM2
,MM3

,MM4
;

if (avg(MM2
) > avg(MM1

)) and (avg(MM4
) < avg(MM3

)) then
nbi = 1 ;

end
if (avg(MM4

) > avg(MM3
)) and (avg(MM2

) < avg(MM1
)) then

nbi = 0 ;
end
return nbi ;

end
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Understanding Branch Mispredictions

Experimental Validation for the Online Phase of the
Attack

I A large input set is separated by simulations over bimodal
and two-level adaptive predictor.

I Average branch misses are observed from HPCs for each
elements in set M1 , M2 , M3 and M4.

I Each set has L = 1000 elements.
I Experiment is repeated over I = 1000 iterations.
I Experiments are performed on various platforms as Core-2

Duo E7400, Intel Core i3 M350 and Intel Core i5-3470.
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Understanding Branch Mispredictions

Experiments on Square and Multiply Algorithm
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Figure: Branch misses from HPCs on square and multiply correctly identifies secret bit
di = 1, ciphertext set partitioned by simulated misses of two-level adaptive predictor
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Understanding Branch Mispredictions

Experiments on Montgomery Ladder
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Figure: Branch misses from HPCs on Montgomery Ladder correctly identifies secret
bit di = 1, ciphertext set partitioned by simulated misses of two-level adaptive predictor
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Understanding Branch Mispredictions

Comparison with timing as side-channel
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Figure: No identification of secret bit is possible using timing as side-channel with
L = 1000 and I = 1000
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Understanding Branch Mispredictions

Existing DPA countermeasures on ECC

Scalar Randomization
If K is the secret scalar and P ∈ E the base point, instead of computing K times P , randomize

the scalar K as K′ = K + r ∗#E where r is a random integer and #E is the order of the curve.

Scalar Splitting
In [2], to randomize the scalar such that instead of computing KP , the scalar is split in two parts

K = (K − r) + r with a random r, and multiplication is computed separately,

KP = (K − r)P + rP .

Point Blinding
This computes K(P +R) instead of KP , where KR can be stored in the system beforehand,

which when subtracted K(P +R)−KR gives back KP .
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Reverse engineering of branch predictors
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2 Understanding Branch Mispredictions

3 Reverse engineering of branch predictors

4 Profiling the BPU Using Asynchronous Measurements

5 Acquire, Deduce and Remove

6 Experimental validation
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Reverse engineering of branch predictors

Code Snippet for granular observations

Branch prediction hardware design is proprietary of the processor
manufacturer.

I The perf class is instantiated with
particular hardware event.

I We incorporate start and stop calls
before and after the target conditional
if-else structure.

I This returns event counts at regular

interval and measurements are

synchronous to the execution of the

conditional block.
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Reverse engineering of branch predictors

Sampling granularly using Ioctl system call

I Previous measurements are not practical for an attacker, as
the attacker cannot modify the executable run by the victim.

I Instead we use perf ioctl in sampling mode.
I We define a function as signal handler which execute

on an interrupt raised by the interrupt handler.
I perf object is instantiated with an event that is used as

sampler object with a predefined sample_period.
I The interrupt handler is called at regular intervals of the
sample_period.

I Measurements are observed to be more noisy if
sample_period is reduced beyond a threshold, due to the
overhead of the interrupt getting generated very frequently.
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Reverse engineering of branch predictors

Reverse Engineering of Branch Predictors in Modern
Intel Processors
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Reverse engineering of branch predictors
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Reverse engineering of branch predictors
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Reverse engineering of branch predictors

Figure: Model accuracy on average for the 2-bit and 3-bit saturating counter state machines, for
four micro-architectures
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Profiling the BPU Using Asynchronous Measurements
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Profiling the BPU Using Asynchronous Measurements

Threat Model

1 The measurements made are such that an event(branch
misses) is getting monitored on specific sample period of
the instruction count.

2 This measurement is handled by ioctl interface and
observed to be asynchronous in nature.

3 The attack model is both practical and realistic in shared
server environment where the hardware is shared between
multiple users processes.

4 In such setting, the branch mispredictions can be observed
over a target execution by the attacker from another
concurrently running process.
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Profiling the BPU Using Asynchronous Measurements

Figure: Model accuracy on average for the 2-bit and 3-bit saturating counter state machines, for
four micro-architectures
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Profiling the BPU Using Asynchronous Measurements

A point addition or doubling step for Edward-1174
curve

b = 1− kj Rb = 2Rb +Rkj

R1 = Z1 · Z2, R2 = R1
2

R3 = X1 ·X2, R4 = Y1 · Y2
R5 = d ·R3 ·R4, R6 = R2 −R5, R7 = R2 +R5

X3 = R1 ·R6 · ((X1 + Y1) · (X2 + Y2)−R3 −R4)
Y3 = R1 ·R7 · (R4 −R3)
Z3 = R6 ·R7
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Acquire, Deduce and Remove
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Acquire, Deduce and Remove

Overview of the attack

We follow by a strategy of Deduce & Remove to target the scalar
splitting and scalar blinding countermeasures on ECC.

1 n-bit scalar K.
2 m branch miss samples from the execution over K.
3 Each branch miss sample is reported after sample period of

I instructions.
4 Thus effectively, each sample of reported branch misses is

affected by n/m bits of the scalar K.
5 In our experiments, we have chosen I such that n/m = 2.

Moreover, considering a b-bit predictor, I should be such
that n/m ≤ b (b = 3 for our case).
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Acquire, Deduce and Remove

Template Building for b bit predictor
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Acquire, Deduce and Remove

Offline template matching for an unknown trace

I Sample trace collected for an unknown secret scalar is
matched iteratively to the previously constructed templates.

I The matching phase is composed of: Deduce and Remove
steps.

Deduce
I In Deduce phase, we start matching from the Least

Significant Bit (LSB) of the scalar multiplication.
I The matching can be done iteratively taking on a trace with

s sample points (s = t ∗m/n).
I These s samples are point-wise matched with all the

template points for each particular template and the
distances for each of the traces are measured using the
Least Square Method (LSM).
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Acquire, Deduce and Remove

Remove
I For real experiments noise is predominant, several

templates may return same least square distance.
I The noise filtering is done in Remove step.
I Parameters chosen for Remove step is device-specific and

can also change with algorithm.
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Acquire, Deduce and Remove

Template matching for Exponent Scalar Splitting

1 Acquire: N pairs of split scalar multiplications over K − r
and r are acquired over t bits, each pair for unknown and
random values of r.

2 Deduce: For each of the N pairs, corresponding pairwise
template matching is performed, on each sample. It results
in N values each for K − r and r. Pairwise adding up of
each pair (K − r + r) results in t-bits of K.

3 Remove: Ideally, all N values of K obtained previously
must be identical. The non-matching values can be
removed by majority voting.
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Acquire, Deduce and Remove

Template matching for scalar blinding

1 Acquire: N blinded scalar multiplication over (K + r#E)P ,
for random, unknown values of r.

2 Deduce: For each of the N trace, pointwise matching over s
branch misprediction samples of t bits is performed. It
results N candidates for t bits for of K + r#E.
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Acquire, Deduce and Remove

3 Remove:
I Choose any 3 branch misprediction traces out of N traces, for random

r1, r2, r3.
I Deduce step reveals t bits of K + r1#E, K + r2#E and K + r3#E

respectively.
I Take pair wise difference of the candidate values example

(K + r1#E)− (K + r2#E).
I Compute r1#E − r2#E, r2#E − r3#E and r1#E − r3#E. Now for

correct t bits of the blinded scalar, adding up of candidate value of
r1#E − r2#E and r2#E − r3#E would result in non-empty set on
intersection with candidate of r1#E − r3#E.

I Combination for empty set for intersection can be discarded, leading to t

bits of blinded scalar.

Iteratively repeating this process leads to retrieval of k + ri#E separately.

Modulus with the order of curve returns secret K for each ri’s.
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Experimental validation
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Experimental validation

Building Branch Misprediction Templates Using perf
ioctl Sampling

Success of our attack is highly dependent on how accurate the
template has been built.

I The templates constructed using
mean value loose their correlation to
the behavior of the 3-bit predictor.

I We separately construct frequency
distributions for each of these sample
points and select the modal value as
the candidate template point.

I Templates constructed taking the
highest frequency points capture the
essence of the distribution accurately.
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Experimental validation

Template for LSB

I The most noisy sample point is the first one, which is
supposed to be affected only by the Least Significant bits.

I This sample gets affected by the branch misses from
instruction before the scalar multiplication starts to execute

I We have performed a frequency analysis on the first branch
miss samples observed over a set of random binary
sequences of input depending on the actual values of the
LSB and the bit following LSB.
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Experimental validation

Retrieving the Least Significant Bit for Scalar Splitting
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Figure: Confusion in determining the
LSB for scalar splitting

I For each of the N sample pairs, we select the pairs
where neither of the sample points exhibits a value 3
or 4.

I If a sample point exhibits value < 2, we classify both
the branches as not-taken ie, the bits to be 11.

I If a sample point exhibits value 2, we conclude that
the branches are either both not-taken or
not-taken followed by a taken branch. Thus the
bit values are 11 or 01.

I If a sample point exhibits value 5, we conclude that
the branches are either both taken or taken
followed by a not-taken branch. Thus the bit values
are 00 or 10.

I If a sample point exhibits value > 5, we classify both
the branches as taken ie, the bits to be 00.
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Experimental validation

Iterative Template matching for scalar splitting
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Figure: Determining next three bits
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Figure: Determining further three bits

Determining 3 bits at a time for scalar splitting
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Experimental validation

Efficiency of Deduce and Remove strategy on Scalar
Blinding
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Figure: Efficiency of Deduce and
Remove step on scalar blinding

I Bars with red represent the total number of
candidates which were matched after template
matching.

I Bar with blue indicates the total number of
candidate values that were pruned.

I Bar in black represents the number of correctly
retrieved candidates after taking intersection. The
number of correctly retrieved ones are higher than
93%.

I Knowing 3 bits we update the state of the predictor
and perform template matching on the next t bits to
retrieve the following 3 bits.
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Experimental validation

Revealing Secret of Secret Splitting and
Randomization
Building template for data-dependent branches in Curve1174 requires two sets of branch
misprediction traces:
I the simulated mispredicted traces from 3-bit predictor for each modular reduction

operations involved in a point addition operation,
I the perf samples corresponding to the same set of inputs.

The ith bit of the blinded scalar is guessed and both 0 and 1 is appended to the already known
(i− 1) bits for each of the j blinded scalar sequences. bm_perf(i=0),j , bm_perf(i=1),j as branch
misprediction samples for only the guessed bit, where the operation is performed over all j
sequences and known (i− 1) bits for two separate guesses. Thus we have 2 · j sequences and
we separately take the ioctl branching samples where the ith bit is guessed to be 0 and 1

respectively.
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Experimental validation

Similarly, we have the simulated branch misses from the 3-bit predictor bm_sim0
i,j and bm_sim1

i,j

for both guesses as discussed earlier. The steps to build a template are as follows:
I For each k instances of the modular reduction operation, we apply a windowing technique

to bm_perf(i=0),j and bm_perf(i=1),j to identify approximately how many samples are
responsible for each modular reduction operation.

I Now for guess = 0, we consider bm_perf(i=0),j and bm_sim0
i,j , and separately build

template points based on whether or not they suffer from a branch miss.
I For guess = 0, we separately consider templates from the samples in bm_perf(i=0),j for

each of the k modular reduction operations involved for point addition for each of the j
sequences.

We construct two bins for each of the k modular reduction operations based on whether they have

a simulated branch miss as listed in bm_sim0
i,j .
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Experimental validation

Let us consider a particular modular reduction in k, we perform a vertical analysis of all
sequences in j. We separate the sequences into two bins based on whether they have a
simulated branch miss at particular modular reduction step in bm_sim0

i,j . Now we fill the
bin_miss(i=0),k with samples from bm_perf(i=0),j for the kth particular modular
reduction, if there has been a simulated branch miss in bm_sim0

i,j . Otherwise, we fill
bin_no_miss(i=0),k if there is no misprediction.We separately construct templates taking
the mode of the distributions of each of these constructed bins as described in the
previous discussions of template building.

At the end of this step, we have 2 · k separate bins for all the k modular reduction operations

considering all the j sequences where all the ith bit has been guessed to zero. A similar

construction can be performed with ith bit being guessed as 1.
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Experimental validation

I

Figure: Model accuracy on average for the 2-bit and 3-bit saturating counter state machines, for
four micro-architectures
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Experimental validation

Countermeasures

1 The most obvious countermeasure is to avoid conditional
if-else implementaton.

2 Another countermeasure to thwart such attacks is to
randomize the state of the predictor intermediate to the
execution.

3 But this does not ensure complete security, since the
adversary can be more powerful having more granular
traces and even then these countermeasures will pose
themselves ineffective.
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Summary

Summary

I We initially perform reverse engineering on the branch predictor hardware of Intel’s
Broadwell and Sandybridge systems and show that the hardware has a significant
similarity in behavior to the 3-bit predictor algorithm.

I Subsequently, we use this granular observation of branch misprediction to attack the DPA
secure implementations of ECC.

I The experimental results illustrate the effectiveness and efficiency of our proposed attack
for both scalar splitting and scalar blinding countermeasures.
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Summary

Thank You
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