
High Performance Computer Architecture (CS60003)

Quiz - 1 (Solutions)

1. (a) Number of Cycles required to execute each type of these instructions are:

Arithmetic and Logic = 1 × 60% × 200, 000 = 120, 000

Load/store with cache hit = 2 × 18% × 200, 000 = 72, 000

Branch = 4 × 12% × 200, 000 = 96, 000

Memory reference with cache miss = 8 × 10% × 200, 000 = 160, 000

Hence, total number of cycles required to execute all the 200,000 instructions = 120,000 +
72,000 + 96,000 + 160,000 = 448,000

Thus,

Average CPI =
Total Cycles

Total Number of Instructions
=

448, 000

200, 000
= 2.24

(b) Frequency of the processor (f) is 40MHz, i.e., 40×106 cycles/sec. Average CPI as calculated
in (a) is 2.24, i.e., 2.24 cycles/inst. Number of instructions executed per second (IPS) by
the processor = f

CPI . Hence,

IPS =
f

CPI
=

40 × 106

2.24
= 17.86 × 106

Hence, MIPS rate = 17.86.

2. Let us denote

(a) CPIxM1
- average CPI of a class X instruction on M1.

(b) CPIyM1
- average CPI of a class Y instruction on M1.

(c) CPIxM2 - average CPI of a class X instruction on M2.

(d) CPIyM2
- average CPI of a class Y instruction on M2.

Assume there are n instructions of class X and class Y each.

Average cycles required to execute a single instruction (CPI) of both M1 and M2 for B1 is
1GHz

500MIPS = 1×109

500×106 = 2.

Average CPI on M1 for B1 can be expressed as:

n× CPIxM1
+ n× CPIyM1

2n
= 2 (1)

Average CPI on M2 for B1 can be expressed as:

n× CPIxM2
+ n× CPIyM2

2n
= 2 (2)

Equation (1) and (2) can be simplified to

CPIxM1
+ CPIyM1

= 4 (3)

CPIxM2
+ CPIyM2

= 4 (4)



After replacing half of the class X instructions with class Y instructions (suite B2), average CPI
on M1 can be expressed as

(n
2 × CPIxM1 + n

2 × CPIyM1) + n× CPIyM1

2 × n
(5)

and average CPI on M2 can be expressed as

(n
2 × CPIxM2

+ n
2 × CPIyM2

) + n× CPIyM2

2 × n
(6)

It is given that M1’s running time is 70% of M2. Therefore, we can relate these two average
CPIs as

(n
2 × CPIxM1 + n

2 × CPIyM1) + n× CPIyM1

2 × n
= 0.7×

(n
2 × CPIxM2 + n

2 × CPIyM2) + n× CPIyM2

2 × n
(7)

This can be simplified to

CPIxM1
+ 3 × CPIyM1

= 0.7 × CPIxM2
+ 2.1 × CPIyM2

(8)

Similarly, for suite B3, average CPI on M1 can be expressed as

n× CPIxM1 + (n
2 × CPIxM1 + n

2 × CPIyM1)

2 × n
(9)

and average CPI on M2 can be expressed as

n× CPIxM2
+ (n

2 × CPIxM2
+ n

2 × CPIyM2
)

2 × n
(10)

It is given that M1’s running time is 1.5 times of M2. Therefore, we can relate these two
quantities as

n× CPIxM1
+ (n

2 × CPIxM1
+ n

2 × CPIyM1
)

2 × n
= 1.5×

n× CPIxM2
+ (n

2 × CPIxM2
+ n

2 × CPIyM2
)

2 × n
(11)

This can be simplified to

3 × CPIxM1
+ ×CPIyM1

= 4.5 × CPIxM2
+ 1.5 × CPIyM2

(12)

Solve the 4-variable system of equations formed by Equations (3), (4), (8) and (12). This gives
the required CPIs

(a) CPIxM1 = 2.49

(b) CPIyM1
= 1.50

(c) CPIxM2
= 0.99

(d) CPIyM2
= 3.00



3. (a) Here, 60% of the computation time can be used by the floating-point processor. Hence,
Fenh = 0.6. The speedup of the floating-point processor is 40% faster. Hence, Senh = 1.4.
Thus, according to Amdahl’s Law,

Overall Speedup =
1

(1 − Fenh) + Fenh

Senh

=
1

(1 − 0.6) + 0.6
1.4

=
1

0.4 + 0.429

= 1.206

(b) Take Cost/Speedup ratio to quantitatively compare between the two options. We will
select the Option having lower value of this ratio.

Option 1: Here, 70% of the computation time can be used by the floating-point processor.
Hence, Fenh = 0.7. Senh = 1.4 as before. Thus, according to Amdahl’s Law,

Overall Speedup =
1

(1 − Fenh) + Fenh

Senh

=
1

(1 − 0.7) + 0.7
1.4

=
1

0.3 + 0.5

= 1.25

Cost/Speedup = 50/1.25 = 40

Option 2: Here, 50% of the computation time can be used by the floating-point processor.
Hence, Fenh = 0.5. The speedup of the floating-point processor, in this case, is 100% faster.
Hence, Senh = 2. Thus, according to Amdahl’s Law,

Overall Speedup =
1

(1 − Fenh) + Fenh

Senh

=
1

(1 − 0.5) + 0.5
2

=
1

0.5 + 0.25

= 1.33

Cost/Speedup = 60/1.33 = 45.11

Therefore, Option 1 is better because it has a smaller Cost/Speedup ratio.



4. The 5 stage pipelined execution of the two programs are illustrated in the following two figures

SW

F D/R A M W

SW

LW

Pipeline Stages

Ti
m

e 
(c

yc
le

s)

LW

LW

LW

LW

Figure 1: 5-stage pipelined execution of Program 1

SW

F D/R A M W

SW

SW

SW

SW

LW

Pipeline Stages

Ti
m

e 
(c

yc
le

s)

LW

LW

LW

Figure 2: 5-stage pipelined execution of Program 2

In a 5 stage pipelined processor, source register access is done at the D/R (Decode/Register
Access) stage. It can be observed that, in case of Program 1, the SW instruction has to wait until
the LW instruction has been completed the write-back stage. This is because the SW instruction’s
D/R stage (Decode/Register access) requires the updated R1 value, but R1 is updated only at
the W (Write Back stage) of the LW instruction. Hence, SW has to stall the pipeline until R1
has been updated. This introduces bubbles in the pipeline and incurs additional clock cycles to
complete the instructions. However, in case of Program 2, the SW instruction accesses R1 register
at D/R stage, and LW instruction accesses R1 at W stage, which comes later. Therefore, pipeline
stalling is not required in this case. Thus, it requires less number of clock cycles than Program
1 implying that Program 2 would execute faster.


