

The Construction

If the RSA problem is hard and H is modeled as a RO, the construction has IND secured encryptions under CPA.

Let A be a PPT, and define:

 $\varepsilon(n)=\Pr[\text{PubK}_{A,\Pi}^{\text{eav}}(n)=1]$

Define $Pub_{A,\Pi}^{eav}(n)$:

1. A random function H is chosen.

2. Generate $\langle N, e, d \rangle$. A is given $p_k = \langle N, e \rangle$

and may query H(.). Eventually A outputs

two messages, $\mathbf{m}_0, \mathbf{m}_1 \leftarrow \{0, 1\}^{l(n)}$

3. A random bit $b \leftarrow \{0,1\}$ and a random $r \leftarrow Z_n^*$ are

chosen. A is given the ciphertext, $\langle [r^e \mod N, H(r) \oplus m_b] \rangle$.

The adversary can still query H(.).

4. Finally, A outputs b'. $Pub_{A,\Pi}^{eav}$ returns 1, if b=b'. Else 0 is returned.

 $E(x) = T(r) || G(r) \oplus x$ is RO-IND-CPA for trapdoor T. Suppose this is not true. That is we have an adversary A=(A₀, A₁) with significant advantage ε . Remember A₀ is used to generate the plaintexts m₀ and m₁. A₁ is then handed the challenge c, which is the ciphertext corresponding to a randomly chosen message. Both A₀ and A₁ can make queries to the random oracle G. Using these algorithms we intend to invert T, the trap-door function without knowing the trap-door.

$$\begin{split} & E(x)=T(r)\|G(r)\oplus x\|H(rx) \text{ is secure against chosen ciphertext attack.}\\ & We proof in the same lines. Consider a successful adversary A=(A_0,A_1)\\ & with probability of success > 1/2 + \varepsilon. We shall construct an algorithm\\ & N, using A which inverts the trapdoor T without knowing the secret. \end{split}$$

In addition to G, now both the algorithms also access $D^{G,H}$, the decryption oracle.

If a query to G is made such that T(r)=y, then return r, else a random string. If a query to H is made such that T(r)=y, then return r, else a random string. If a query is asked at a||w||b to $D^{G,H}$, checks whether there is already a query at r of G and ru of H st. a=T(r), $w=G(r) \oplus u$, then return u, else "invalid".

Define A_k : Event that A makes an oracle call at G(r) or H(ru) Define L_k : Event that $D^{G,H}$ is asked query for a||w||b, where $b=H(T^{-1}(a) || w \oplus G(T^{-1}(a)))$, but never asks its H oracle on $T^{-1}(a) || w \oplus G(T^{-1}(a))$. $\therefore 1/2 + \varepsilon < \Pr[A \text{ succeeds}|L_k]\Pr[L_k] + \Pr[A \text{ succeeds}|\neg L_k \land A_k]\Pr[\neg L_k \land A_k] + \Pr[A \text{ succeeds}|\neg L_k \land \neg A_k]\Pr[\neg L_k \land \neg A_k]$ $1/2 + \varepsilon < \Pr[L_k] + \Pr[A_k] + 1/2$ $\therefore \varepsilon < n2^{-k} + \Pr[A_k]$ $\therefore \Pr[A_k] > \varepsilon - n2^{-k}.Contradiction.$