
1

Public Key Encryption Algorithms
and the Random Oracle

Debdeep Mukhopadhyay

IIT Kharagpur

Provable Security

• Schemes are efficient but not provably secured:
– example standard RSA

• Schemes are provably secured are not efficient.

• Exceptions exist, like the El Gamal encryption
which is efficient and secured at the same time.
We need more constructions which are provably
secured, but also efficient.
– Random Oracles gives one such approach.

2

What is a Random Oracle?

• Imagine it as a large book of random
numbers.

• when you turn to any page (query on any
input), a random output is returned.
– if you subsequently turn into the same page

(that is query again on the same point) the
same number is returned.

• but if different points are accessed,
random numbers are returned.

The RO Methodology

• First, a scheme is proved secured in the
ideal world: that is assuming that ROs
exist. Standard assumptions are also
made.

• Secondly, the RO is replaced by a real
hash function, that is if a party is to query
a hash for say x, it computes it itself.

3

Proof Techniques

• If the adversary A, has not queried for
some point x, then H(x) is completely
random.

• We will construct a reduction, showing that
if A is able to break the encryption scheme
using the RO, then it can be used to break
a standard cryptographic assumption.

Proof Techniques

• The reduction may choose values for the
output of H (the RO) and return to A.
– this is called “programmability”

• The reduction sees all the queries that A
makes to the RO

4

Soundness of the proof system

• Problem arises when we fix the RO by a
hash function.

• However, using a scheme that is proved in
the RO model is better than no proof.

• However if at the slight cost of efficiency,
we have a cryptosystem with a proof in the
standard model (like that of the ElGamal
encryption), then that is preferred.

A concrete example

• Consider a RSA based scheme,
– public key: [N,e]

– secret key: d

– Plaintext: mЄ{0,1}l(n)

– Enc: <[remod N, m ^ H(r)]>

5

The Construction

eav
A,

If the RSA problem is hard and H is modeled as a RO,

the construction has IND secured encryptions under

CPA.

Let A be a PPT, and define:

(n)=Pr[PubK (n)=1] 

eav
A,Define Pub (n):

k

l(n)
0 1

*
n

1. A random function H is chosen.

2. Generate <N,e,d>. A is given p =<N,e>

and may query H(.). Eventually A outputs

two messages, m ,m {0,1}

3. A random bit b {0,1} and a random r Z are

chosen.



 
e

b

eav
A,

A is given the ciphertext, <[r mod N, H(r) m]>.

The adversary can still query H(.).

4. Finally, A outputs b'. Pub returns 1, if b=b'. Else 0 is

returned.




6

The proof

• Define Query to be the event that at any point A
queries r to the RO (where r is the value used
to generate the challenge, c).

Pr[success]=Pr[success Query] Pr[success Query]

 Pr[success|Query] Pr[Query]

1
Claim 1: Pr[success|Query]

2
Claim 2: Pr[Query] is negligible

   

 



Claim 1 follows from the fact that if A does not query for r, then H(r) is
random, and so A has no way to understand whether m0 or m1 was
encrypted.

Claim 2

• Construct a reduction D, which takes as input
c1=remod N and has to output r (that is break
RSA).

• It generates randomly c2Є{0,1}l(n) and sends to
A.

• A makes some queries to H, ri. D observes
the queries and checks if ri

emod N=c1.
Whenever there is a match, thus RSA is
broken. So, the Pr[Query] must be negligible,
under the standard RSA assumption.

7

0 1

0 0

1

() () || () is RO-IND-CPA for trapdoor T.

Suppose this is not true. That is we have an adversary A=(A , A)

with significant advantage .

Remember A is used to generate the plaintexts m and

m .

E x T r G r x



 

1

0 1

A is then handed the challenge c, which is the ciphertext

corresponding to a randomly chosen message.

Both A and A can make queries to the random oracle G.

Using these algorithms we intend to invert T, the trap-door function

without knowing the trap-door.

0

0

1

1

 If A asks a query for r (used to generate the challenge),

return r (thus we have inverted the trap-door). Else A terminates,

and A starts.

Instead of feeding A the challenge ciphertext, it is ask
|x|

1

k 1

ed T(r)||z, where

z={0,1} , is a random string.

It is checked whether A makes a query at r, by checking if T(r)=y.

Define A : Event that A asks a query at r. If it does not then it has

no advanta

k k

ge in guessing which plaintext was encrypted.

1/2 + < Pr[A succeeds|A]Pr[] Pr[succeeds|A]Pr[].

 < Pr[] 1/2

Pr[]

Thus we can invert the trapdoor T with significant probabi

k k

k

k

A A A

A

A





 


 
lity,

thus we arrive at a contradiction.

8

0 1

E(x)=T(r)||G(r) x||H(rx) is secure against chosen ciphertext attack.

We proof in the same lines. Consider a successful adversary A=(A ,A)

with probability of success > 1/2 + . We shall construct an 



G,H

algorithm

N, using A which inverts the trapdoor T without knowing the secret.

In addition to G, now both the algorithms also access D , the decryption

oracle.

If a query to G is made such that T(r)=

G,H

y, then return r, else a random string.

If a query to H is made such that T(r)=y, then return r, else a random string.

If a query is asked at a||w||b to D , checks whether there is already

a query at r of G and ru of H st. a=T(r), w=G(r) u, then return u, else "invalid". 

k

G,H
k

-1 -1

-1 -1

Define A : Event that A makes an oracle call at G(r) or H(ru)

Define L : Event that D is asked query for a||w||b, where

b=H(T () || (T ()), but never asks its H oracle on

T () || (T ().

1

a w G a

a w G a




 k k k k

k k

k

-k

-k

/2 + < Pr[A succeeds|L]Pr[L] Pr[A succeeds| L]Pr[L]

Pr[A succeeds| L]Pr[L]

1/2 + <Pr[L] Pr[] 1/ 2

 <n2 Pr[]

Pr[] - n2 . .

k k

k k

k

k

k

A A

A A

A

A

A Contradiction









     
   
 

 

 

