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Provable Security 

• Schemes are efficient but not provably secured:
– example standard RSA

• Schemes are provably secured are not efficient.

• Exceptions exist, like the El Gamal encryption 
which is efficient and secured at the same time. 
We need more constructions which are provably 
secured, but also efficient.
– Random Oracles gives one such approach.
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What is a Random Oracle?

• Imagine it as a large book of random 
numbers.

• when you turn to any page (query on any 
input), a random output is returned.
– if you subsequently turn into the same page 

(that is query again on the same point) the 
same number is returned.

• but if different points are accessed, 
random numbers are returned.

The RO Methodology

• First, a scheme is proved secured in the 
ideal world: that is assuming that ROs
exist. Standard assumptions are also 
made.

• Secondly, the RO is replaced by a real 
hash function, that is if a party is to query 
a hash for say x, it computes it itself. 
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Proof Techniques

• If the adversary A, has not queried for 
some point x, then H(x) is completely 
random.

• We will construct a reduction, showing that 
if A is able to break the encryption scheme 
using the RO, then it can be used to break 
a standard cryptographic assumption.

Proof Techniques

• The reduction may choose values for the 
output of H (the RO) and return to A.
– this is called “programmability”

• The reduction sees all the queries that A 
makes to the RO
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Soundness of the proof system

• Problem arises when we fix the RO by a 
hash function.

• However, using a scheme that is proved in 
the RO model is better than no proof.

• However if at the slight cost of efficiency, 
we have a cryptosystem with a proof in the 
standard model (like that of the ElGamal
encryption), then that is preferred.

A concrete example

• Consider a RSA based scheme, 
– public key: [N,e]

– secret key: d

– Plaintext: mЄ{0,1}l(n)

– Enc: <[remod N, m ^ H(r)]>
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The Construction

eav
A,

If the RSA problem is hard and H is modeled as a RO, 

the construction has IND secured encryptions under 

CPA.

Let A be a PPT, and define:

(n)=Pr[PubK (n)=1] 

eav
A,Define Pub (n):

k

l(n)
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1. A random function H is chosen. 

2. Generate <N,e,d>. A is given p =<N,e> 

and may query H(.). Eventually A outputs 

two messages, m ,m {0,1}

3. A random bit b {0,1} and a random r Z  are 

chosen. 



 
e

b

eav
A,

A is given the ciphertext, <[r mod N, H(r) m ]>. 

The adversary can still query H(.).

4. Finally, A outputs b'.  Pub  returns 1, if b=b'. Else 0 is 

returned.  



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The proof

• Define Query to be the event that at any point A 
queries r to the RO (where r is the value used 
to generate the challenge, c).

Pr[success]=Pr[success Query] Pr[success Query]

                     Pr[success|Query] Pr[Query]

1
Claim 1: Pr[success|Query]

2
Claim 2: Pr[Query] is negligible

   

 



Claim 1 follows from the fact that if A does not query for r, then H(r) is 
random, and so A has no way to understand whether m0 or m1 was 
encrypted.

Claim 2

• Construct a reduction D, which takes as input 
c1=remod N and has to output r (that is break 
RSA).

• It generates randomly c2Є{0,1}l(n) and sends to 
A.

• A makes some queries to H, ri. D observes 
the queries and checks if ri

emod N=c1. 
Whenever there is a match, thus RSA is 
broken. So, the Pr[Query] must be negligible, 
under the standard RSA assumption.
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( ) ( ) || ( )  is RO-IND-CPA for trapdoor T.

Suppose this is not true. That is we have an adversary A=(A , A ) 

with significant advantage . 

Remember A  is used to generate the plaintexts m  and 

m . 

E x T r G r x



 

1

0 1

A  is then handed the challenge c, which is the ciphertext 

corresponding to a randomly chosen message. 

Both A  and A  can make queries to the random oracle G. 

Using these algorithms we intend to invert T, the trap-door function 

without knowing the trap-door. 

0

0 

1

1

 If A  asks a query for r (used to generate the challenge), 

return r (thus we have inverted the trap-door). Else A terminates, 

and A  starts. 

Instead of feeding A  the challenge ciphertext, it is ask
|x|

1

k 1

ed T(r)||z, where 

z={0,1} , is a random string.  

It is checked whether A  makes a query at r, by checking if T(r)=y. 

Define A : Event that A  asks a query at r. If it does not then it has 

no advanta

k k

ge in guessing which plaintext was encrypted. 

1/2 +  < Pr[A succeeds|A ]Pr[ ] Pr[  succeeds|A ]Pr[ ]. 

               < Pr[ ] 1/2

Pr[ ]

Thus we can invert the trapdoor T with significant probabi

k k

k

k

A A A

A

A





 


 
lity, 

thus we arrive at a contradiction. 
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E(x)=T(r)||G(r) x||H(rx) is secure against chosen ciphertext attack. 

We proof in the same lines. Consider a successful adversary A=(A ,A ) 

with probability of success > 1/2 + . We shall construct an 



G,H

algorithm 

N, using A which inverts the trapdoor T without knowing the secret. 

In addition to G, now both the algorithms also access D , the decryption 

oracle. 

If a query to G is made such that T(r)=

G,H

y, then return r, else a random string. 

If a query to H is made such that T(r)=y, then return r, else a random string.

If a query is asked at a||w||b to D , checks whether there is already 

a query at r of G and ru of H st. a=T(r), w=G(r) u, then return u, else "invalid". 

k

G,H
k

-1 -1

-1 -1

Define A : Event that A makes an oracle call at G(r) or H(ru)

Define L : Event that D  is asked query for a||w||b, where 

b=H(T ( ) || (T ( )),  but never asks its H oracle on 

T ( ) || (T ( ). 

1

a w G a

a w G a




 k k k k

k k

k

-k

-k

/2 +  < Pr[A succeeds|L ]Pr[L ] Pr[A succeeds| L ]Pr[ L ]

Pr[A succeeds| L ]Pr[ L ]

1/2 +  <Pr[L ] Pr[ ] 1/ 2

 <n2 Pr[ ]

Pr[ ]  - n2 . .

k k

k k

k

k

k

A A

A A

A

A

A Contradiction









     
   
 

 

 


