Construction of Pseudo-random Functions

Debdeep Mukhopadhyay
IIT Kharagpur

Background

- We have seen how to make Pseudo-random generators from one way functions.
- We shall proceed to make Pseudo-random functions from generators.
- Let G be a PSRG with expansion factor $l(n)=2n$ (i.e., G is length doubling).
- Define, $G(s)=(G_0(s),G_1(s))$, where $|s|=|G_0(s)|=|G_1(s)|=n$.
• Use G to make keyed function F
 – uses an n bit key
 – takes one bit as input
 – outputs another n bits
• For a key k, define,
 – $F_k(0)=G_0(k)$
 – $F_k(1)=G_1(k)$
• We claim that this is a pseudorandom function! Why?

Simple Reason

• This follows from the fact that G is a pseudorandom generator.
• A random function mapping one bit to n bits is defined by a table of two n-bit values, each of which is chosen at random.
• Here we have defined a keyed function, where each n-bit value is pseudorandom (as the key is randomly chosen)
• Thus F_k cannot be distinguished from a random function by a PPT algorithm.
Extend to two bit input

- $F_k(00) = G_0(G_0(k))$
- $F_k(01) = G_1(G_0(k))$
- $F_k(10) = G_0(G_1(k))$
- $F_k(11) = G_1(G_1(k))$

- in order to show that F_k is pseudorandom, thus we have to reason that the four strings, $G_0(G_0(k))$, $G_1(G_0(k))$, $G_0(G_1(k))$, $G_1(G_1(k))$ are pseudorandom.

Hybrid Construction

- $G_0(G_0(k)) \rightarrow G_0(k_0) \rightarrow r_1$
- $G_1(G_0(k)) \rightarrow G_1(k_0) \rightarrow r_2$
- $G_0(G_1(k)) \rightarrow G_0(k_1) \rightarrow r_3$
- $G_1(G_1(k)) \rightarrow G_1(k_1) \rightarrow r_4$

- Here k_0, k_1, r_1, r_2, r_3 and r_4 are randomly chosen n bit strings.
Hybrid Construction

- $G_0(G_0(k)) \rightarrow G_0(k_0) \rightarrow r_1$
- $G_1(G_0(k)) \rightarrow G_1(k_0) \rightarrow r_2$
- $G_0(G_1(k)) \rightarrow G_0(k_1) \rightarrow r_3$
- $G_1(G_1(k)) \rightarrow G_1(k_1) \rightarrow r_4$

If you can distinguish between these strings then you can distinguish either between $G(k) = (G_0(k), G_1(k))$ and (k_0, k_1) or $G(k_0)$ and (r_1, r_2), or $G(k_1)$ and (r_3, r_4)

Combining, these facts we have F_k as pseudorandom.

More generalization

Define: $F_k : \{0,1\}^n \rightarrow \{0,1\}^n$

$F_k(x_1x_2...x_n) = G_{x_n} (G_{x_{n-1}} (...G_{x_1}(k)))$
Pictographically

Explanation

• The construction can be viewed as a full binary tree of depth n.
• The value at the root is the key k.
• The value of a left child of a node with value k’ is $G_0(k’)$
• The value of a right child of a node with value k’ is $G_1(k’)$
• The value of $F_k(x)$ is thus obtained by traversing the tree according to x
 – if $x_i=0$ traverse left
 – else traverse right
• The entire tree is exponential in n.
 – however to compute the function the entire tree need not be stored. we just need to compute the values on the path and arrive at a leaf.
Theorem

• If G is a pseudorandom generator with expansion factor $l(n) = 2n$, then the above construction is a pseudorandom function.

Proof

• Let D be a PPT algorithm which is given oracle access to a function that is either a random function that maps n bits to n bits, or the function F_k for a randomly chosen k.
Proof

• Consider the distribution of trees, obtained by varying the leaf randomly.
• Each leaf of the binary tree of depth n, is thus a sequence of n bits.
• use H_n^0 to denote the distribution.
 – note this is the distribution may be thought of being on the functions F_k.

Proof

• Likewise, define H_n^i, for $0 \leq i \leq n$ as follows:
 – values for node i is chosen at random.
 – values for nodes $j \geq i+1$ are chosen as per the function definition. That is see the value of its parent. If the value is k':
 • value is $G_0(k')$ if is left child
 • value is $G_1(k')$ if is right child
 – note that from the point of view of the function, the values of the nodes at levels 0 through $i-1$ are irrelevant. This is because they do not decide the value of the leaves.
What is H_n^n?

- It is a true random function mapping n bits to n bits.
 - this is because all the leaf values are randomly chosen.
- So, the distinguisher D is able to distinguish between the distribution H_n^0 (the actual construction) and H_n^n (the random function)

Construct D'
(distinguisher against G)

- Assume that D (distinguisher against the PRF F_k) makes $t(n)$ queries to the function.
- Let D' receive $2n.t(n)$ bits of either truly random bits or output generated by $t(n)$ invocations of the function $G(s)$, with independent random values for s.
Strategy of D’

• D’ answers queries of D as follows:
 – D’ chooses an i randomly, and goes to node i of the initially empty binary tree.
 • D asks queries of the form $x_1x_2\ldots x_n$
 • D’ computes the values of the nodes at level i+1 with its sample of length 2n as follows:
 – labels the left node with left part of the sample
 – labels the right node with right part of the sample
 • D’ repeats this for all the q(n) queries of D.

Observations

• If D’ receives a truly random string of length $2nt(n)$, then it answers D exactly according to $H_{n_i^{i+1}}$. Why?
• If D’ receives a pseudorandom input, then it answers D exactly according to $H_{n_i}^i$.
• Thus, if for some i, D distinguishes $H_{n_i}^i$ and $H_{n_i^{i+1}}$ with a probability of $\epsilon(n)/n$, then with the same probability D’ also distinguishes t(n) invocations of G(s) from a truly random string of length $2nt(n)$. That is with probability $\epsilon(n)/n$.
• If $\epsilon(n)$ is non-negligible, we violate the assumption that G is a PRG.
Reading

• How to Construct Random Functions?
 – O. Goldreich, Goldwasser, Micali, JACM 1986

One way functions

• If one way functions then pseudo random generators exist.
• If pseudorandom generators exist, so does pseudorandom functions.
• One way functions are hence necessary.
• Are one way functions sufficient also?
Theorem

- Pseudorandom generators exist only if one-way functions exist or
 If there are pseudorandom generators, then there exists one-way functions.

Let G be a pseudo-random generator with expansion factor of length $2n$. We show G is itself one-way. We shall show that the ability to invert G can be used to distinguish the output of G from random.

Proof

Let A be a PPT algorithm, and then define:

$$\epsilon(n) = \Pr[\text{Invert}_{A,G}(n) = 1]$$

Define D a PPT as follows:

Input : $w \in \{0,1\}^{2n}$

1. Run A on $w \Rightarrow x = A(w)$
2. If $w = G(x)$, then return 1, else 0.
Computing the success probability of D.

If w is random, what is the probability that D returns 1?

Note that there are at most 2^n elements in the range of G. If w falls outside the range, then A cannot invert and so D answers 0. Hence, $\Pr_{w \leftarrow \{0,1\}^n}[D(w)=1] \leq 2^n$.

Conclusion

If w=G(s) for a uniformly chosen s, then by definition A computes a correct inverse, with probability exactly $\epsilon(n)$. This is the same probability with which D returns 1.

$\therefore |\Pr_{w \leftarrow \{0,1\}^n}[D(w) = 1] - \Pr_{x \leftarrow \{0,1\}^n}[D(G(s)) = 1]| \geq \epsilon(n)-2^n$.

Hence, if $\epsilon(n)$ is negligible, then D also have a significant success probability.
Question

• Does secured private key encryption imply the existence of one-way functions?
 – not straightforward
 – there may be construction techniques which do not depend on the above primitives.
• We show that it really does, assuming the weakest form of security notions of the encryption scheme.

Theorem

• If there exists a private key encryption that has indistinguishable encryptions in the presence of an eavesdropper, then one-way functions exist!
 – note for a perfect cipher, where the key length is same or more than the message length, such an assumption need not hold.
 – so we are considering practical ciphers, where the key length is less than the message length.
Proof

Define $\Pi=(\text{Gen},\text{Enc},\text{Dec})$ be a private key encryption scheme that has indistinguishable encryptions in the presence of an adversary. Define $f: f(k,m,r) = (\text{Enc}_k(m,r), m)$

Here k, m and r are respectively of n, $2n$ and $l(n)$ bits. That is the encryption uses at most $l(n)$ bits of randomness. We claim that this function is one-way.

Proof

Consider a PPT algorithm A, which inverts the function, f with a probability of $\epsilon(n)$.

$\therefore \epsilon(n) = \text{Pr}[\text{Invert}_{A'}(n) = 1]$. Assume $\epsilon(n)$ is non-negligible.

Now define a PPT algorithm A', which runs an experiment $\text{Priv}_{\Pi}^{\text{CPA}}(n)$.
Now define a PPT algorithm A', which runs in experiment $\text{Priv}_{\text{CPA}}^{\text{A'}}(n)$.

1. A' chooses random $m_0, m_1 \leftarrow \{0,1\}^n$ and output the two messages. It receives a challenge c, which is the encryption of m_b, where b is randomly chosen.

2. A' has to say whether $b=0$ or $b=1$. A' runs $A(c, m_b)$ to obtain (k', m', r'). If $f(k', m', r') = (c, m_b)$, then A' outputs 0. Else it outputs a random bit.

If c has been generated by encrypting $m_b \ [i.e. \ b = 0]$ and A is able to invert, then we see that A' gives correct answer. Otherwise, if A is unable to invert, A' has a probability of 1/2 being correct.

$\therefore \ Pr[\text{Priv}_{\text{CPA}}(n) = 1 \ | \ b = 0] = Pr[\text{invert}_A \ | \ b = 0] + \frac{1}{2}(1 - Pr[\text{invert}_A \ | \ b = 0])$

$= \varepsilon(n) + \frac{1}{2}(1 - \varepsilon(n)) = \frac{1}{2}(1 + \varepsilon(n))$
Proof

If \(c \) has been generated by encrypting \(m_1 \) (i.e \(b=1 \)) by a key say \(k \), what is the probability that \(A' \) returns 1?

Note that \(c \) must be the ciphertext of the message \(m_0 \) for some other value of the key, say \(k' \). So, when \((c,m_0) \) is being given to \(A \), the probability that \(c \) is actually the ciphertext of a randomly chosen \(m_0 \) is atmost \(2^{-n} \).

Then \(A \) inverts and obtains \((k',m_0,r'') \), and if \(f(k',m_0,r'')=(c,m_0) \), then it returns 0. Now this is wrong, as \(b=1 \).

Otherwise, invert does not take place and there is 1/2 probability of \(A' \) to return the correct bit.

Conclusion

\[
\therefore \Pr[\operatorname{Priv}_{\Pi,A}^{\text{CPA}}(n)=1|b=1]=\frac{1}{2}(1-\Pr[\text{Invert}_A|b=1]) \geq \frac{1}{2}(1-2^{-n})
\]

Combining, \(
\Pr[\operatorname{Priv}_{\Pi,A}^{\text{CPA}}(n)=1] \geq \frac{1}{2} \cdot \frac{1}{2}(1+\varepsilon(n))+\frac{1}{2} \cdot \frac{1}{2}(1-2^{-n})
\)

\[
= \frac{1}{2} + \frac{\varepsilon(n)}{4} - \frac{1}{2^{n+2}}
\]

Thus the indistinguishability of the encryption scheme under the assumption of an eavesdropper is violated. Thus \(\varepsilon(n) \) must be negligible.