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Encryption vs Message 
Authentication

• Does ciphers provide authentication?

– Stream Ciphers: Flipping a bit of the ciphertext, 
results in the same bit being flipped in the message.

– Block Ciphers: OFB and counter modes are like 
stream ciphers. 

Even for ECB mode, changing a block affects only 
the block.

For CBC mode, changing the jth bit of IV, changes the 
jth bit of the first message block.
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Message Authentication Codes 
(MAC)

A MAC is a tuple of PPTalgorithms (Gen,Mac,Vrfy) st:

1. The key generation algorithm Gen takes as input the 

security parameter n, and outputs a key k, |k| n.

2. The tag generation algorithm Mac, takes a


s input 

a key k, a message m {0,1}*, and outputs a tag t. 

We write this as t Mac ( ).

3. The verification algorithm Vrfy takes as input 

a key k, a message m, and a tag t. It outputs, b=1, 

to indicate V

k m




alid, and b=0 to indicate invalid. 

We assume wlog. Vrfy is deterministic, 

and thus, b=Vrfy(m,t)

Fixed length MAC

It is required for every n, every k output by Gen, 

and every message m, Vrfy ( , ( )) 1.

If (Gen,Mac,Vrfy) is such that for every k output by 

Gen, algorithm Mac is only defined for messages 

of lengt

k km Mac m 

( )

h l(n) (and Vrfy  outputs 0 for any message 

m {0,1} ,  then we say that (Gen,Mac,Vrfy) is 

a fixed length Mac for messages of arbitrary length.

k

l n
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MAC-forge experiment

,The message authentication experiment Mac-forge ( ) :

1. A random key k is generated by running Gen(n).

2. The adversary A is given n, and oracle access 

to Mac (.).

Let Q denote the set of all the oracl

A

k

n

e accesses.

The adversary finally produces an (m,t).

3. The adversary is successful (indicated 

by the experiment returning 1), if and only if:

              i) Vrfy ( , ) 1

             ii) m Q
k m t 



Secure MAC-formally

,

A MAC is existentially unforgeable under an adaptive 

chosen message attack, or just secure if for all PPT 

adversaries A, there exists a negligible function negl 

such that: 

           Pr[Mac-forge (nA  )=1] negl(n) 
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Is this definition strong?

• Formalism says that if the adversary is 
able to generate the MAC of any message 
it suffices:
– But the message may not be valid.

• We show a demonstration to see why this 
definition is needed.

• Further the definition makes security of 
MAC independent of applications. 

Constructing a Fixed length MAC

Let F be a pseudorandom function. Define a fixed 

length MAC for messages of length n as follows:

1. Gen: on input n, choose k {0,1}  uniformly at 

random.

2. Mac: Compute, tag t=F (m). If |m| n, then 

out

n

k




put nothing.

3. Vrfy: Check t=F (m). If |m| n, then output 0.k 
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Theorem

If F is a pseudorandom function, then the above scheme 

is a fixed-length Mac for messages of length n, that is 

secure under an adaptive chosen message attack.

Proof Outline

• Replace the pseudorandom function with a random 
function.

• If the MAC is insecure when the function is replaced by a 
pseudorandom function, another PPT adversary D can 
use this fact to distinguish the pseudorandom function 
from a random function.

• D who is provided with an oracle with the task of 
distinguishing from a random function, employs the 
MAC-adversary, A. 

• For all messages which A sends, D uses its oracles to 
generate the tags.

• Finally, when A provides (m,t), where m is new, D 
checks whether its oracle also produces the same 
output. Then it produces a 1, else 0.
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Extension to variable lengths

• Split the message into d blocks, pad the 
last by 0’s so that each is of size n bits.

• Apply the fixed length MAC for messages 
of size n on each block.
– XOR all the blocks and then authenticate
– Authenticate each block separately.
– Authenticate each block along with a 

sequence number: ti=MACk(i||mi)

• but none of them works.

The final MAC construction

/4
1

Let '=(Gen',Mac',Vrfy') be a fixed length MAC

for messages of length n. Define a MAC as follows:

1. Gen: Same as Gen'

2. On input k {0,1}  and m {0,1}* of length 

2 ,  parse m into d blocks m ,..., ,

n

n
dl m



 



/4

 each 

of length n/4. (Final block is padded if needed).

Choose a random identifier, r {0,1} .n
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The final MAC construction

'

1

For i=1,...,d, compute t ( || || || ),  

where i and l are uniqely coded strings of length 

n/4. Finally, output the tag, t=(r, t ,...,t ).

3. Vrfy: on input a key k, and a message m of length 

 2

i k i

d

Mac r l i m

l



 /4
1 '

1

,  and a tag t=(r, t ,...,t ),  parse m into d blocks 

m ,..., ,  each of length n/4. 

(Final block is padded if needed).

output 1 iff d'=d, and vrfy ( || || || , ) 1 for 1 i d

n
d

d

k i i

m

r l i m t   

Theorem

If '  is a secure fixed length MAC for messages of length n, 

then the above construction is a MAC that is secure under an 

adaptive chosen message attack.


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Proof

,

Let  denote the MAC. Let  be a PPT algorithm, and define:

                          Pr[Mac-forge (n)=1] 

Repeat: Same message identifier appears in two of the tags 

returned by MAC oracles.

Forge: At 

A

A





least one of the blocks || || ||  was never 

previously authenticated by the MAC oracle, yet 

Vrfy'( || || || ) 1

i

i

r l i m

r l i m 

Proof (Contd.)

, ,

,

,

Pr[Mac-forge ( ) 1] Pr[Mac-forge ( ) 1 Repeat]

                                        + Pr[Mac-forge ( ) 1 Repeat Forge]

                                         + Pr[Mac-forge ( ) 1 Repeat For

A A

A

A

n n

n

n

 





   

   

   ge]



9

Claim 1

 There is a  function,  such that:

                     Pr[Repeat]  ( )

negl

n




/4

2

/4

Proof: Let q(n) be the number of MAC oracle queries made by .

In the  query, oracle chooses, {0,1}  uniformly.  

( )
Thus, Pr[Repeat]  

2

n
i

n

A

ith r

q n





Claim 2

,

,

Pr[Mac-forge ( ) 1 Repeat Forge] 0

If, Mac-forge ( ) 1 and Repeat 0 Forge 1
A

A

n

n




   

    

1

1

Let, ( , ) be the final output of A [the forged message].

Let its length be ,  and the identifier is .

Thus, , ,..., .

Parse ( ,..., ),  each of length n/4. Last block may be 

padded with 0s.

d

d

m t

l r

t r t t

m m m

 

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Case 1

1

'
, 1 1

Case 1: Identifier  is different from all the identifiers used by the 

MAC oracles. 

|| ||1||  was never previously authenticated by the MAC oracle. 

Since, Mac-forge ( ) 1 ( || ||1|| , ) 1A k

r

r l m

n Vrfy r l m t



   .

Thus, Forge occurs. 

Case 2

Identifier  was used in exactly one of the MAC tags obtained 

by  from its oracles.

Denote by ( ', ') the query-response pair, when the identifier 

 occurred.

'.

Let '  be the length of '.

r

A

m t

r

m Q m m

l m

  
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Case 2a

1

2 : '

 This implies, || ||1||  was never previously authenticated 

by the MAC oracle.

This is because all MAC oracle responses used a different 

identifier, and the one oracle that used the same i

Case a l l

r l m



'
, 1 1

dentifier, 

has a different length value.

Since, Mac-forge ( ) 1 ( || ||1|| , ) 1.

Thus, Forge occurs. 
A kn Vrfy r l m t   

Case 2b

' '
1

'

Case 2b: '

Parse ' ( ,..., ). 

Note: since ',  the number of blocks in  and '  are same.

Since, ',  i, st. .

But, then || || ||  was never authenticated.

All previous oracles, except 

d

i i

i

l l

m m m

l l m m

m m m m

r l i m






  

'

,

one had different identifiers. 

The one with the same identifier, had  different sequence 

numbers, '  in all the blocks except one; in this remaining 

block it used .

 Since, Mac-forge ( ) 1

i i

A

i i

m m

n Vr





  '
1 1( || ||1|| , ) 1.

Thus, Forge occurs.  
kfy r l m t 
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Thus,

, /4

( )
Pr[Mac-forge ( ) 1 Repeat Forge] ( )  

2A n

q n
n n     

Adversary A’ against fixed length 
MAC

• A’ runs A as a subroutine.

• Whenever A requests for a tag, it generates an 
identifier r, and makes queries appropriately to 
its own fixed length MAC.

• When A outputs, (m,t), A’ parses m and sees 
any mi which did not occur in its previous oracle 
queries (to the fixed MAC).

• If it finds such it outputs, (r||l||i||mi,ti) as a valid 
MAC. If not, it outputs nothing.
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Success Probability of A’

', ' ,

,

/4

Pr[Mac-forge ( ) 1] Pr[Mac-forge ( ) 1 Forge]

                                       Pr[Mac-forge ( ) 1 Forge Repeat]   

( )
                                        (n)-   

2

A A

A

n

n n

n

q n

 



   

   



CBC-MAC

• Previous construction is inefficient.

• Large number of block cipher calls 
required.

• Message tag also large in length.
– for message length = l.n, block cipher needs 

tp be applied 4l times.

– Message tag length also more than 4l.n
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CBC-MAC for fixed length 
messages

Let E be a pseudorandom function, and fix a length 

. The basic CBC-MAC for fixed length messages is:

1. Gen: On input , choose {0,1}  uniformly at 

random.

2. Mac: on input {0,1}  and a message of 

n

n

l

n k

k





1

0

1

length 

.  and repeat the following steps:

     1. Parse ...  where each  is of length ,

and set 0 .

     2. For 1 to ,  ( ).

Output  as the tag.

3. Vrfy: on input a key {0,1} ,

l i

n

i k i i

l

n

l n

m m m m n

t

i l t F t m

t

k







  

  a message of length 

. ,  and a tag of length ,  output 1 if and only if ( ).kl n n t Mac m

Note that the 
IV is set to 0, 

and not random
as for CBC 
encryptionn.

Security

• Let l be a polynomial in n. If F is a 
pseudorandom function, then the above 
construction is a fixed length MAC for 
messages of length l.n and is existentially 
unforgeable under an adaptive chosen 
message attack.
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Not secured if used for messages 
of arbitrary length

Not secured if used for messages 
of arbitrary length

• Adversary can forge in that case.

• Consider a message m1, and a tag t1. 

– Thus, t1=MACk(m1)

• Likewise, t2=MACk(m2 xor t1)

• Thus the MAC for the message m1||m2 can 
be forged as t2.
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What if the  IV is random?

• If the IV is random, it is a part of the tag. 
• Consider a message m of one block 

length.
• Let the tag for m be (IV,t).
• Thus, a valid tag for IV is (m,t).
• So, in CBC-MAC the IV is not used.

– this shows that it is dangerous to change 
cryptographic primitives without proper 
analysis!

Another difference with 
CBC-encrypt

• In CBC-encrypt, we export each block 
encryption, but not so in CBC-MAC.

• Consider a message made of two blocks, 
m1||m2, and the corresponding tag as t1||t2.

• Thus, t1=Fk(m1), and t2=Fk(t1 xor m2).

• How can you forge a tag using this?
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Another difference with 
CBC-encrypt

• In CBC-encrypt, we export each block 
encryption, but not so in CBC-MAC.

• Consider a message made of two blocks, 
m1||m2, and the corresponding tag as t1||t2.

• Thus, t1=Fk(m1), and t2=Fk(t1 xor m2).

• How can you forge a tag using this?
– Consider a message t1 xor m2||t2 xor m1

– Its valid tag is t2||t1. 

CBC-MAC for arbitrary length

• Prepend the message with its length |m| 
(encoded as n-bit string), and then 
compute the basic CBC-MAC.

• What if we append the message with 
the length? 
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CBC-MAC for arbitrary length

• Change the key generation to choose two 
keys k1 and k2 of length  n.

• Thus to authenticate a message of length 
n, first compute a basic CBC-MAC using 
k1: t=MACk1(m)

• Then output tag, t’=Fk2(t)
– in this case one does not need to know the 

length of the message before the MAC 
computation. 

CCA-secured encryption scheme

• We have seen that the previous encryption 
schemes are vulnerable to CCA attacks.

• We show here that message 
authentication codes along with CPA 
secured schemes are CCA-secured.
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The CCA-secure encryption 
scheme 

Let ( , , ) be a private key 

encryption scheme, and let ( , , ) 

be a message authentication code.

Define an encryption scheme ' ( ', ', ')

as follows:

   1. Gen': on input n, 

E E

M M

Gen Enc Dec

Gen Mac Vrfy

Gen Enc Dec

 
 

 

1 2

1 2

1 2

run Gen (n) and Gen (n) to obtain 

keys , .

   2. Enc': on input a key ( , ) and a plaintext ,  compute:

          (m), and (c), and output ciphertext 

       <c,t>

   3. Dec': on input 

E M

k k

k k

k k m

c Enc t Mac 

2 1

1 2a key ( , ) and a ciphertext <c,t>,  first 

check Vrfy (c,t)=1, and then output Dec (c), if Vrfy returns 1, 

else output . 

k k

k k



Note that no 
ciphertext
generated 
by Enc’ will be 
decrypted to ┴

Security Proof

• Before we go into the proof, we impose an 
additional requirement of the MAC, that 
the MACs have to be unique.
– ie. for every k and m, there is a unique value t 

st. Vrfyk(m,t)=1.

• This is not problematic, as we have seen 
CBC-MAC as to be unique.
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Theorem

If  is a CPA-secure private key encryption scheme 

and  is a secure message authentication code with 

unique tags, then the construction is a CCA-secure 

private key encryption scheme.

E

M




Proof Idea

• The adversary is a CCA adversary and hence can make 
decryption queries.

• The queries to the decryption oracle can be of two types:
– ciphertexts that are generated from its encryption oracles:

• adversary already knows that the message is m. 
– those that are not generated from encryption oracle, but which 

are valid (pass the verification):
• this event is called ValidQuery
• when it occurs the MAC is forged

• Thus if the CCA adversary has to win the challenge, then it ask 
queries of both these types:
– first one does not give any extra information and hence is not 

useful.
– second one occurs with a very small probability as the MAC is 

secure.
– thus the adversary is reduced to the CPA setting.
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Detailed Proof

Let  be a PPT adversary attacking the scheme in a 

CCA attack. 

Let ValidQuery be the event that  submits a 

query <c,t> to its decryption oracle that was not 

previously obtained from its encryption or

A

A

2

, '

, ' , '

, '

acle, but 

for which Vrfy (c,t)=1.

Thus, Pr[PrivK (n)=1]

     =  Pr[PrivK (n)=1 ValidQuery] +Pr[PrivK (n)=1 ValidQuery]

     Pr[ValidQuery] Pr[PrivK (n)=1 ValidQuery]

k

cca
A

cca cca
A A

cca
A



 



 

  

ValidQuery occurs with negligible 
probability

 is the PPT adversary attacking the scheme in a 

CCA attack. 

Let q(.) be a polynomial that upper bounds the number 

of dcryption oracle queries made by .

Consider the following adversary  attacking tM

A

A

A

,

he 

MAC  through Mac-forge ( ) :
M MM A n
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Define the MAC adversary

2

1

Adversary  has access to oracle Mac (.) :

1.Choose {0,1}

2. Choose {1,..., ( )}

3.Run  on input .  makes encryption and decryption 

queries. 

4. The encryption queries are answered as follows:

  

M k

n

A

k

i q n

A n A




1
      1. Compute (m)

        2. Query  to the MAC oracle, and receive  in response.

    Return <c,t> to .

It also creates the challenge ciphertext in the usual way, by 

randomly choosing a bit 

kc Enc

c t

A

b



{0,1},  and encrypting . bm

Define the MAC adversary

5.  The decryption queries are answered as follows:

        When  makes a decryption query to , ,  

      answers as follows:

        1. If <c,t> was a response to a previous encryption 

oracle for a

M

A c t

A

 

 message ,  return .

        2. If this is the  decryption oracle query using a new 

value of c, output (c,t) and stop.

        3. Otherwise output .

m m

ith




