
1

Authentication

Debdeep Mukhopadhyay

IIT Kharagpur

Encryption vs Message
Authentication

• Does ciphers provide authentication?

– Stream Ciphers: Flipping a bit of the ciphertext,
results in the same bit being flipped in the message.

– Block Ciphers: OFB and counter modes are like
stream ciphers.

Even for ECB mode, changing a block affects only
the block.

For CBC mode, changing the jth bit of IV, changes the
jth bit of the first message block.

2

Message Authentication Codes
(MAC)

A MAC is a tuple of PPTalgorithms (Gen,Mac,Vrfy) st:

1. The key generation algorithm Gen takes as input the

security parameter n, and outputs a key k, |k| n.

2. The tag generation algorithm Mac, takes a


s input

a key k, a message m {0,1}*, and outputs a tag t.

We write this as t Mac ().

3. The verification algorithm Vrfy takes as input

a key k, a message m, and a tag t. It outputs, b=1,

to indicate V

k m




alid, and b=0 to indicate invalid.

We assume wlog. Vrfy is deterministic,

and thus, b=Vrfy(m,t)

Fixed length MAC

It is required for every n, every k output by Gen,

and every message m, Vrfy (, ()) 1.

If (Gen,Mac,Vrfy) is such that for every k output by

Gen, algorithm Mac is only defined for messages

of lengt

k km Mac m 

()

h l(n) (and Vrfy outputs 0 for any message

m {0,1} , then we say that (Gen,Mac,Vrfy) is

a fixed length Mac for messages of arbitrary length.

k

l n

3

MAC-forge experiment

,The message authentication experiment Mac-forge () :

1. A random key k is generated by running Gen(n).

2. The adversary A is given n, and oracle access

to Mac (.).

Let Q denote the set of all the oracl

A

k

n

e accesses.

The adversary finally produces an (m,t).

3. The adversary is successful (indicated

by the experiment returning 1), if and only if:

 i) Vrfy (,) 1

 ii) m Q
k m t 



Secure MAC-formally

,

A MAC is existentially unforgeable under an adaptive

chosen message attack, or just secure if for all PPT

adversaries A, there exists a negligible function negl

such that:

 Pr[Mac-forge (nA )=1] negl(n) 

4

Is this definition strong?

• Formalism says that if the adversary is
able to generate the MAC of any message
it suffices:
– But the message may not be valid.

• We show a demonstration to see why this
definition is needed.

• Further the definition makes security of
MAC independent of applications.

Constructing a Fixed length MAC

Let F be a pseudorandom function. Define a fixed

length MAC for messages of length n as follows:

1. Gen: on input n, choose k {0,1} uniformly at

random.

2. Mac: Compute, tag t=F (m). If |m| n, then

out

n

k




put nothing.

3. Vrfy: Check t=F (m). If |m| n, then output 0.k 

5

Theorem

If F is a pseudorandom function, then the above scheme

is a fixed-length Mac for messages of length n, that is

secure under an adaptive chosen message attack.

Proof Outline

• Replace the pseudorandom function with a random
function.

• If the MAC is insecure when the function is replaced by a
pseudorandom function, another PPT adversary D can
use this fact to distinguish the pseudorandom function
from a random function.

• D who is provided with an oracle with the task of
distinguishing from a random function, employs the
MAC-adversary, A.

• For all messages which A sends, D uses its oracles to
generate the tags.

• Finally, when A provides (m,t), where m is new, D
checks whether its oracle also produces the same
output. Then it produces a 1, else 0.

6

Extension to variable lengths

• Split the message into d blocks, pad the
last by 0’s so that each is of size n bits.

• Apply the fixed length MAC for messages
of size n on each block.
– XOR all the blocks and then authenticate
– Authenticate each block separately.
– Authenticate each block along with a

sequence number: ti=MACk(i||mi)

• but none of them works.

The final MAC construction

/4
1

Let '=(Gen',Mac',Vrfy') be a fixed length MAC

for messages of length n. Define a MAC as follows:

1. Gen: Same as Gen'

2. On input k {0,1} and m {0,1}* of length

2 , parse m into d blocks m ,..., ,

n

n
dl m



 



/4

 each

of length n/4. (Final block is padded if needed).

Choose a random identifier, r {0,1} .n

7

The final MAC construction

'

1

For i=1,...,d, compute t (|| || ||),

where i and l are uniqely coded strings of length

n/4. Finally, output the tag, t=(r, t ,...,t).

3. Vrfy: on input a key k, and a message m of length

 2

i k i

d

Mac r l i m

l



 /4
1 '

1

, and a tag t=(r, t ,...,t), parse m into d blocks

m ,..., , each of length n/4.

(Final block is padded if needed).

output 1 iff d'=d, and vrfy (|| || || ,) 1 for 1 i d

n
d

d

k i i

m

r l i m t   

Theorem

If ' is a secure fixed length MAC for messages of length n,

then the above construction is a MAC that is secure under an

adaptive chosen message attack.



8

Proof

,

Let denote the MAC. Let be a PPT algorithm, and define:

 Pr[Mac-forge (n)=1]

Repeat: Same message identifier appears in two of the tags

returned by MAC oracles.

Forge: At

A

A





least one of the blocks || || || was never

previously authenticated by the MAC oracle, yet

Vrfy'(|| || ||) 1

i

i

r l i m

r l i m 

Proof (Contd.)

, ,

,

,

Pr[Mac-forge () 1] Pr[Mac-forge () 1 Repeat]

 + Pr[Mac-forge () 1 Repeat Forge]

 + Pr[Mac-forge () 1 Repeat For

A A

A

A

n n

n

n

 





   

   

   ge]

9

Claim 1

 There is a function, such that:

 Pr[Repeat] ()

negl

n




/4

2

/4

Proof: Let q(n) be the number of MAC oracle queries made by .

In the query, oracle chooses, {0,1} uniformly.

()
Thus, Pr[Repeat]

2

n
i

n

A

ith r

q n





Claim 2

,

,

Pr[Mac-forge () 1 Repeat Forge] 0

If, Mac-forge () 1 and Repeat 0 Forge 1
A

A

n

n




   

    

1

1

Let, (,) be the final output of A [the forged message].

Let its length be , and the identifier is .

Thus, , ,..., .

Parse (,...,), each of length n/4. Last block may be

padded with 0s.

d

d

m t

l r

t r t t

m m m

 


10

Case 1

1

'
, 1 1

Case 1: Identifier is different from all the identifiers used by the

MAC oracles.

|| ||1|| was never previously authenticated by the MAC oracle.

Since, Mac-forge () 1 (|| ||1|| ,) 1A k

r

r l m

n Vrfy r l m t



   .

Thus, Forge occurs.

Case 2

Identifier was used in exactly one of the MAC tags obtained

by from its oracles.

Denote by (', ') the query-response pair, when the identifier

 occurred.

'.

Let ' be the length of '.

r

A

m t

r

m Q m m

l m

  

11

Case 2a

1

2 : '

 This implies, || ||1|| was never previously authenticated

by the MAC oracle.

This is because all MAC oracle responses used a different

identifier, and the one oracle that used the same i

Case a l l

r l m



'
, 1 1

dentifier,

has a different length value.

Since, Mac-forge () 1 (|| ||1|| ,) 1.

Thus, Forge occurs.
A kn Vrfy r l m t   

Case 2b

' '
1

'

Case 2b: '

Parse ' (,...,).

Note: since ', the number of blocks in and ' are same.

Since, ', i, st. .

But, then || || || was never authenticated.

All previous oracles, except

d

i i

i

l l

m m m

l l m m

m m m m

r l i m






  

'

,

one had different identifiers.

The one with the same identifier, had different sequence

numbers, ' in all the blocks except one; in this remaining

block it used .

 Since, Mac-forge () 1

i i

A

i i

m m

n Vr





  '
1 1(|| ||1|| ,) 1.

Thus, Forge occurs.
kfy r l m t 

12

Thus,

, /4

()
Pr[Mac-forge () 1 Repeat Forge] ()

2A n

q n
n n     

Adversary A’ against fixed length
MAC

• A’ runs A as a subroutine.

• Whenever A requests for a tag, it generates an
identifier r, and makes queries appropriately to
its own fixed length MAC.

• When A outputs, (m,t), A’ parses m and sees
any mi which did not occur in its previous oracle
queries (to the fixed MAC).

• If it finds such it outputs, (r||l||i||mi,ti) as a valid
MAC. If not, it outputs nothing.

13

Success Probability of A’

', ' ,

,

/4

Pr[Mac-forge () 1] Pr[Mac-forge () 1 Forge]

 Pr[Mac-forge () 1 Forge Repeat]

()
 (n)-

2

A A

A

n

n n

n

q n

 



   

   



CBC-MAC

• Previous construction is inefficient.

• Large number of block cipher calls
required.

• Message tag also large in length.
– for message length = l.n, block cipher needs

tp be applied 4l times.

– Message tag length also more than 4l.n

14

CBC-MAC for fixed length
messages

Let E be a pseudorandom function, and fix a length

. The basic CBC-MAC for fixed length messages is:

1. Gen: On input , choose {0,1} uniformly at

random.

2. Mac: on input {0,1} and a message of

n

n

l

n k

k





1

0

1

length

. and repeat the following steps:

 1. Parse ... where each is of length ,

and set 0 .

 2. For 1 to , ().

Output as the tag.

3. Vrfy: on input a key {0,1} ,

l i

n

i k i i

l

n

l n

m m m m n

t

i l t F t m

t

k







  

 a message of length

. , and a tag of length , output 1 if and only if ().kl n n t Mac m

Note that the
IV is set to 0,

and not random
as for CBC
encryptionn.

Security

• Let l be a polynomial in n. If F is a
pseudorandom function, then the above
construction is a fixed length MAC for
messages of length l.n and is existentially
unforgeable under an adaptive chosen
message attack.

15

Not secured if used for messages
of arbitrary length

Not secured if used for messages
of arbitrary length

• Adversary can forge in that case.

• Consider a message m1, and a tag t1.

– Thus, t1=MACk(m1)

• Likewise, t2=MACk(m2 xor t1)

• Thus the MAC for the message m1||m2 can
be forged as t2.

16

What if the IV is random?

• If the IV is random, it is a part of the tag.
• Consider a message m of one block

length.
• Let the tag for m be (IV,t).
• Thus, a valid tag for IV is (m,t).
• So, in CBC-MAC the IV is not used.

– this shows that it is dangerous to change
cryptographic primitives without proper
analysis!

Another difference with
CBC-encrypt

• In CBC-encrypt, we export each block
encryption, but not so in CBC-MAC.

• Consider a message made of two blocks,
m1||m2, and the corresponding tag as t1||t2.

• Thus, t1=Fk(m1), and t2=Fk(t1 xor m2).

• How can you forge a tag using this?

17

Another difference with
CBC-encrypt

• In CBC-encrypt, we export each block
encryption, but not so in CBC-MAC.

• Consider a message made of two blocks,
m1||m2, and the corresponding tag as t1||t2.

• Thus, t1=Fk(m1), and t2=Fk(t1 xor m2).

• How can you forge a tag using this?
– Consider a message t1 xor m2||t2 xor m1

– Its valid tag is t2||t1.

CBC-MAC for arbitrary length

• Prepend the message with its length |m|
(encoded as n-bit string), and then
compute the basic CBC-MAC.

• What if we append the message with
the length?

18

CBC-MAC for arbitrary length

• Change the key generation to choose two
keys k1 and k2 of length n.

• Thus to authenticate a message of length
n, first compute a basic CBC-MAC using
k1: t=MACk1(m)

• Then output tag, t’=Fk2(t)
– in this case one does not need to know the

length of the message before the MAC
computation.

CCA-secured encryption scheme

• We have seen that the previous encryption
schemes are vulnerable to CCA attacks.

• We show here that message
authentication codes along with CPA
secured schemes are CCA-secured.

19

The CCA-secure encryption
scheme

Let (, ,) be a private key

encryption scheme, and let (, ,)

be a message authentication code.

Define an encryption scheme ' (', ', ')

as follows:

 1. Gen': on input n,

E E

M M

Gen Enc Dec

Gen Mac Vrfy

Gen Enc Dec

 
 

 

1 2

1 2

1 2

run Gen (n) and Gen (n) to obtain

keys , .

 2. Enc': on input a key (,) and a plaintext , compute:

 (m), and (c), and output ciphertext

 <c,t>

 3. Dec': on input

E M

k k

k k

k k m

c Enc t Mac 

2 1

1 2a key (,) and a ciphertext <c,t>, first

check Vrfy (c,t)=1, and then output Dec (c), if Vrfy returns 1,

else output .

k k

k k



Note that no
ciphertext
generated
by Enc’ will be
decrypted to ┴

Security Proof

• Before we go into the proof, we impose an
additional requirement of the MAC, that
the MACs have to be unique.
– ie. for every k and m, there is a unique value t

st. Vrfyk(m,t)=1.

• This is not problematic, as we have seen
CBC-MAC as to be unique.

20

Theorem

If is a CPA-secure private key encryption scheme

and is a secure message authentication code with

unique tags, then the construction is a CCA-secure

private key encryption scheme.

E

M




Proof Idea

• The adversary is a CCA adversary and hence can make
decryption queries.

• The queries to the decryption oracle can be of two types:
– ciphertexts that are generated from its encryption oracles:

• adversary already knows that the message is m.
– those that are not generated from encryption oracle, but which

are valid (pass the verification):
• this event is called ValidQuery
• when it occurs the MAC is forged

• Thus if the CCA adversary has to win the challenge, then it ask
queries of both these types:
– first one does not give any extra information and hence is not

useful.
– second one occurs with a very small probability as the MAC is

secure.
– thus the adversary is reduced to the CPA setting.

21

Detailed Proof

Let be a PPT adversary attacking the scheme in a

CCA attack.

Let ValidQuery be the event that submits a

query <c,t> to its decryption oracle that was not

previously obtained from its encryption or

A

A

2

, '

, ' , '

, '

acle, but

for which Vrfy (c,t)=1.

Thus, Pr[PrivK (n)=1]

 = Pr[PrivK (n)=1 ValidQuery] +Pr[PrivK (n)=1 ValidQuery]

 Pr[ValidQuery] Pr[PrivK (n)=1 ValidQuery]

k

cca
A

cca cca
A A

cca
A



 



 

  

ValidQuery occurs with negligible
probability

 is the PPT adversary attacking the scheme in a

CCA attack.

Let q(.) be a polynomial that upper bounds the number

of dcryption oracle queries made by .

Consider the following adversary attacking tM

A

A

A

,

he

MAC through Mac-forge () :
M MM A n

22

Define the MAC adversary

2

1

Adversary has access to oracle Mac (.) :

1.Choose {0,1}

2. Choose {1,..., ()}

3.Run on input . makes encryption and decryption

queries.

4. The encryption queries are answered as follows:

M k

n

A

k

i q n

A n A




1
 1. Compute (m)

 2. Query to the MAC oracle, and receive in response.

 Return <c,t> to .

It also creates the challenge ciphertext in the usual way, by

randomly choosing a bit

kc Enc

c t

A

b



{0,1}, and encrypting . bm

Define the MAC adversary

5. The decryption queries are answered as follows:

 When makes a decryption query to , ,

 answers as follows:

 1. If <c,t> was a response to a previous encryption

oracle for a

M

A c t

A

 

 message , return .

 2. If this is the decryption oracle query using a new

value of c, output (c,t) and stop.

 3. Otherwise output .

m m

ith



