How to build Pseudorandom Permutations?:
Luby-Rackoff's Construction
Debdeep Mukhopadhyay
IIT Kharagpur

Pseudo-random permutation

- A pseudorandom function is an efficient function, F: {0,1}^kx{0,1}ⁿ→{0,1}ⁿ, such that no efficient algorithm A, can distinguish F_K(.) from R(.) for a randomly chosen key K←{0,1}ⁿ and a random function R:{0,1}ⁿ→{0,1}ⁿ.
- This implies:

 $A^{F_K(.)}$ behaves like $A^{R(.)}$

Pseudorandom Permutation

- It is also a permutation.
- Moreover there exists an efficient inverse, P_κ⁻¹.
- A pseudorandom permutation is also a pseudorandom function.
- Strong pseudorandom permutation: No efficient algorithm A can distinguish well between $<P_K(.),P_K^{-1}(.)>$ from $<\Pi(.),\Pi^{-1}(.)>$ for a randomly chosen key and random permutation, Π .

$$A^{P_K(.),P_K^{-1}}$$
 behaves like $A^{\Pi(.),\Pi^{-1}(.)}$

Building Pseudorandom Permutations

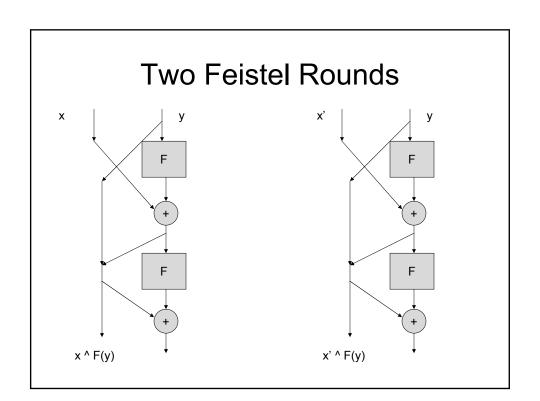
- We can build pseudorandom permutations from pseudorandom functions, F
- Define

$$D_F(x, y) = y, F(y) \oplus x$$

- Note that this is injective and that does not depend whether F is injective or not.
- Note that D_F and D_F⁻¹ are efficiently computable.
- This construction was originally due to Horst Feistel.

Is one round Pseudorandom

- No.
- Note that the output contains the right half of the input.
- This is extremely unlikely in case of a random permutation.
- So, does two rounds work?



3 Rounds of DES

- 3 rounds of DES is also not pseudorandom permutation in the strong sense.
- But 4 round DES is a strong pseudorandom permutation.

Proof

Define $P_K = D_{F_{k_1}}(D_{F_{k_2}}(D_{F_{k_2}}(D_{F_{k_1}}(x))))$. Given 4 random functions,

 $R = \langle R_1, ..., R_4 \rangle, R_i : \{0,1\}^m \to \{0,1\}^m.$

Let, $P_R(x) = D_{R_4}(D_{R_3}(D_{R_2}(D_{R_1}(x))))$

First let us reason that: P_K and P_R are indistinguishable, as otherwise F is not pseudorandom.

 $|\Pr[A^{P_K, P_K^{-1}}() = 1] - \Pr[A^{P_R, P_R^{-1}}() = 1]| \le 4\varepsilon$

The proof is using a hybrid argument.

Consider the following five algorithms from $\{0,1\}^{2m} \rightarrow \{0,1\}^{2m}$:

 H_0 : pick random keys K_1, K_2, K_3, K_4

 $H_0(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_{K_2}}(D_{F_{K_1}}(.))))$

 H_1 : pick random keys K_2, K_3, K_4 and a random

function $F_1: \{0,1\}^m \to \{0,1\}^m$

 $H_1(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_{K_2}}(D_{F_1}(.))))$

 H_2 : pick random keys K_3 , K_4 and random

functions F_1 and $F_2: \{0,1\}^m \rightarrow \{0,1\}^m$

 $H_2(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_2}(D_{F_1}(.))))$

 H_3 : pick random keys K_4 and random

functions $F_1, F_2, F_3 : \{0,1\}^m \to \{0,1\}^m$

 $H_3(.) = D_{F_{K_4}}(D_{F_3}(D_{F_2}(D_{F_1}(.))))$

 H_4 : pick random functions $F_1, F_2, F_3, F_4: \{0,1\}^m \rightarrow \{0,1\}^m$

 $H_4(.) = D_{F_4}(D_{F_2}(D_{F_2}(D_{F_3}(.))))$

Clearly H_0 gives the first probability of using all pseudorandom and H_4 gives the construction using all random functions.

Hence, we know there exists an i for which:

 $|\Pr[A^{H_i, H_i^{-1}} = 1] - \Pr[A^{H_{i+1}, H_{i+1}^{-1}} = 1]| > \varepsilon$

Define an algorithm A' using A as follows:

On the first i layers A' picks keys $K_1, ..., K_i$.

A' runs the pseudorandom function F using the

i keys $K_1, K_2, ..., K_i$

Proof:

On the ith layer, the oracle G is run.

For the remaining layers a random function is run.

Thus, A' operates on G and has to decide whether G is pseudorandom or random.

Note that when G is pseudorandom we have A^{G} behaving exactly same as $A^{H_{i},H_{i}^{-1}}$.

When G is a random function, A^{G} behaves exactly like $A^{H_{i+1},H_{i+1}^{-1}}$. Thus, we have:

$$||Pr_{K}[A^{R(1)}]| - Pr_{R}[A^{R(1)}]| > \varepsilon,$$

which contradicts that F is pseudorandom.

Next Step...

$$\Pr[A^{P_R, P_R^{-1}}() = 1] - \Pr[A^{\Pi, \Pi^{-1}}() = 1] \le \frac{t^2}{2^{2m}} + \frac{t^2}{2^m}$$

where $\Pi: \{0,1\}^{2m} \to \{0,1\}^{2m}$ is a random permutation.

Assume that the algorithm A is non-repeating.

Introduce one more experiment S(A) that simulates A and simulates every oracle query by providing a random answer.

[Note that the simulated answer from S() may be INCONSISTENT with a truly random permutation]

Let A be a non-repeating algorithm of complexity at most t queries.

$$|\Pr[S(A)=1]-\Pr[A^{\Pi,\Pi^{-1}}()=1] \le \frac{t^2}{2^{2m+1}}$$

Define a transcript a record of all oracle queries, $<(x_1, y_1),...(x_t, y_t)>$. The output of the algorithm is purely a function of the transcript.

Define consistent transcript T to be such that

$$\mathbf{x}_{\mathbf{i}} = \mathbf{x}_{j} \Longleftrightarrow \mathbf{y}_{i} = \mathbf{y}_{j}.$$

Consistent Transcripts

Also note that if the transcript is consistent, then

 $Pr[Tr(S)=\sigma|Tr(S) \text{ is consistent}]$

$$=\frac{2^{-2mt}}{1(1-\frac{1}{2^{2m}})...(1-\frac{t-1}{2^{2m}})}=\frac{(2^{2m}-t)!}{2^{2m}!}$$

$$\Pr[Tr(A^{\Pi,\Pi^{-1}}) = \sigma] = \frac{1}{2^{2m}} \frac{1}{(2^{2m} - 1)} \dots \frac{1}{(2^{2m} - t + 1)} = \frac{(2^{2m} - t)!}{2^{2m}!}$$

That is when the transcripts are consistent then the experiment S and Π cannot be distinguished.

$$\begin{aligned} &|\Pr[S(A) = 1] - \Pr[A^{\Pi,\Pi^{-1}}() = 1] \\ &= |\Pr[S(A) = 1 | Tr(S) \text{ is consistent}] \Pr[Tr(S) \text{ is consistent}] \\ &+ \Pr[S(A) = 1 | Tr(S) \text{ is inconsistent}] \Pr[Tr(S) \text{ is inconsistent}] \\ &- \Pr[A^{\Pi,\Pi^{-1}}() = 1] \Pr[Tr(S) \text{ is consistent}] \\ &- \Pr[A^{\Pi,\Pi^{-1}}() = 1] \Pr[Tr(S) \text{ is inconsistent}]| \\ &\leq |(\Pr[S(A) = 1 | Tr(S) \text{ is consistent}] - \Pr[A^{\Pi,\Pi^{-1}}() = 1]) \Pr[Tr(S) \text{ is consistent}]| \\ &+ |(\Pr[S(A) = 1 | Tr(S) \text{ is inconsistent}] - \Pr[A^{\Pi,\Pi^{-1}}() = 1]) \Pr[Tr(S) \text{ is inconsistent}]| \\ &\leq 0 + \Pr[Tr(S) \text{ is inconsistent}] \\ &\leq \left(\frac{t}{2}\right) \frac{1}{2^{2m}} \leq \frac{t^2}{2^{2m+1}} \end{aligned}$$

$$\Pr[A^{P_R,P_R^{-1}}()=1] - \Pr[S(A)=1] \le \frac{t^2}{2^{2m+1}} + \frac{t^2}{2^m}$$

Let T consist of all valid transcripts for which the algorithm A returns 1.

$$|\Pr[A^{P_R, P_R^{-1}}() = 1] - \Pr[S(A) = 1]|$$

$$= \sum_{\tau \in T} (\Pr[A^{P_R, P_R^{-1}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau]) \mid$$

Let $T' \subset T$, consist of the consistent transcripts (consistent with a permutation).

$$\left| \therefore \left| \sum_{\tau \in T \setminus T'} (\Pr[A^{P_R, F_R^{-1}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau]) \right| \right|$$

$$= \sum_{\tau \in T \setminus T'} \Pr[S(A) \leftarrow \tau] \le \frac{t^2}{2} \frac{1}{2^{2m}} = \frac{t^2}{2^{2m+1}}$$

Bounding the other part will require the details of the construction. Fix a transcript $(x_i, y_i) \in T'$. Each x_i can be written as (L_i^0, R_i^0) . This gets transformed due to the 4 rounds. After the jth round we have (L_i^j, R_i^j) .

Functions F_1 and F_4 are said to be good for the transcript if $(R_1^1, R_2^1, ..., R_t^1)$ and $(L_1^3, L_2^3, ..., L_t^3)$ do not have any repeatitions. What happens when $R_1^1 = R_1^1$?

$$R_{i}^{1}=L_{i}^{0}\oplus F_{1}(R_{i}^{0})$$

$$R_i^1 = L_i^0 \oplus F_1(R_i^0)$$

$$\Rightarrow 0 = L_i^0 \oplus L_j^0 \oplus F_1(R_i^0) \oplus F_1(R_j^0)$$

The algorithm A is non-repeating, so (L_i^0, R_i^0) is distinct.

Note $R_i^0 \neq R_j^0$, as otherwise $L_i^0 = L_j^0$, and thus $x_i = x_j$.

Thus in the above equality the function F_1 is called at two distinct points, thus the output is randomly chosen. Thus the probability of the equality being satisfied is 2^{-m} for a given i,j pair.

$$\therefore \Pr_{\mathbf{F}_{i}}[\exists i, j \in [t], \mathbf{R}_{i}^{1} = \mathbf{R}_{j}^{1}] \leq \frac{t^{2}}{2^{m+1}}.$$

Likewise, $0=R_i^4 \oplus R_j^4 \oplus F_4(L_i^4) \oplus F_4(L_j^4)$

$$\therefore \Pr_{F_1}[\exists i, j \in [t], L_i^3 = L_j^3] \le \frac{t^2}{2^{m+1}}.$$

Thus, $\Pr_{F_1, F_4}[F_1, F_4 \text{ not good for transcript}] \leq \frac{t^2}{2^m}$.

Let us fix good functions F_1, F_4 . We have:

$$L_{i}^{3}=R_{i}^{2}=L_{i}^{1} \oplus F_{2}(R_{i}^{1})$$

$$R_{i}^{3}=L_{i}^{2} \oplus F_{3}(R_{i}^{2})=R_{i}^{1} \oplus F_{3}(L_{i}^{3})$$

Thus,
$$F_2(R_i^1), F_3(L_i^3) = (L_i^3 \oplus L_i^1, R_i^3 \oplus R_i^1)$$

Note,
$$(\mathbf{x}_i, \mathbf{y}_i) \Leftrightarrow \mathbf{F}_2(\mathbf{R}_i^1), \mathbf{F}_3(\mathbf{L}_i^3) = (\mathbf{L}_i^3 \oplus \mathbf{L}_i^1, \mathbf{R}_i^3 \oplus \mathbf{R}_i^1)$$

If we have good functions, F_1 and F_4 , the values

 R_i^1 and L_i^3 are distinct. Thus the occurence of (x_i,y_i)

is independent of i and thus the probability that a particular transcript is obtained is exactly 2^{-2mt}.

Note that this is the same as for the algorithm S(A).

Thus in this case we cannot distinguish both the algorithms and A is unable to determine whether it is interacting with S(A) or (P_R, P_R^{-1}) .

$$\begin{split} & \therefore |\sum_{\tau \in T'} (\Pr[A^{\frac{P_R, P_R^{-1}}{R}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau])| \\ & \leq \sum_{\tau \in T'} (\Pr[A^{\frac{P_R, P_R^{-1}}{R}} \leftarrow \tau] |F_1, F_4 \text{ not good for } \tau)|) \Pr[F_1, F_4 \text{ not good for } \tau] \\ & \leq \frac{\mathsf{t}^2}{2^m} \end{split}$$

Solve

• Complete the proof