How to build Pseudorandom
Permutations?:
Luby-Rackoff’'s Construction

Debdeep Mukhopadhyay
lIT Kharagpur

Pseudo-random permutation

» A pseudorandom function is an efficient
function, F: {0,1}*x{0,1}"=>{0,1}", such that no
efficient algorithm A, can distinguish F(.) from
R(.) for a randomly chosen key K<{0,1}" and a
random function R:{0,1}">{0,1}".

* This implies:

AF<© pbehaves like ARV

Pseudorandom Permutation

It is also a permutation.

Moreover there exists an efficient inverse, P 1.
A pseudorandom permutation is also a
pseudorandom function.

Strong pseudorandom permutation: No efficient
algorithm A can distinguish well between
<Py(.),Pc'(.)> from <I1(.), M-1(.)> for a randomly
chosen key and random permutation, I1.

1 . =]
APORC hahaves like ATOTTO

Building Pseudorandom
Permutations

We can build pseudorandom permutations
from pseudorandom functions, F

Define

De (X, ¥) =Y, F(y)®x

Note that this is injective and that does not
depend whether F is injective or not.

Note that Dy and D¢1 are efficiently
computable.

This construction was originally due to Horst
Feistel.

Is one round Pseudorandom

No.

Note that the output contains the right half
of the input.

This is extremely unlikely in case of a
random permutation.

So, does two rounds work?

Two Feistel Rounds

© ©
/ /

e e

x M F(y) X" M F(y)

3 Rounds of DES

» 3 rounds of DES is also not pseudo-
random permutation in the strong sense.

* But 4 round DES is a strong
pseudorandom permutation.

Proof

Define P, = DFM (DFk3 (Dsz (DFM (x)))). Given 4 random functions,
R=<R,...R,> R, :{0,3" - {0,3".

Let, Py (x)= DR4 (DR3 (DR2 (DR1 (x))))

First let us reason that: P, and P, are indistinguishable, as
otherwise F is not pseudorandom.

|PrLA%® () =1]- PrIA™®' () =1] < 4¢

The proof is using a hybrid argument.

Consider the following five algorithms from {0,213 —{0,1}*":

H, : pick random keys K, K,,K;, K,

Hy()=Dr, (D, (Dr (Dr, ()

H, : pick random keys K,,K,, K, and a random
function F, :{0,3" —{0,3"

Proof: H,() =D, (Dp, (Dr, (D5())

H, : pick random keys K,, K, and random

functions F, and F, : {0,1}" — {0,1}"

H, () = Dy, (D, (D, (D ()))

H, : pick random keys K, and random

functions F,F,,F, :{0,}" —{0,1}"

H,() = D, (D, (D, (D (1))

H, : pick random functions F,F,, R, F, :{0,3" —{0,"

H,() = D, (D, (D, (D, ()))

Clearly H, gives the first probability of using all pseudorandom
and H, gives the construction using all random functions.
Hence, we know there exists an i for which:

IPrAR T =1]— PrlAM« R = 1] |> &

Define an algorithm A’ using A as follows:

On the first i layers A’ picks keys K,,..., K..

A’ runs the pseudorandom function F using the

i keys K, K,,... K,

On the ith layer, the oracle G is run.

For the remaining layers a random function is run.

Thus, A' operates on G and has to decide whether G is
pseudorandom or random.

Note that when G is pseudorandom we have A*® behaving
exactly same as A"

When G is a random function, A’ behaves exactly like AMw i,
Thus, we have:

IPr [AT0 =1]-Pr [ARO =1]|> &,

which contradicts that F is pseudorandom.

Next Step...

2t
2m +_m
2 2

PI[AR % () =1] - Pr[A™™ () =1] <

where IT:{0,1}*" — {0,1}*" is a random permutation.

Assume that the algorithm A is non-repeating.

Introduce one more experiment S(A) that simulates A and
simulates every oracle query by providing a random answer.

[Note that the simulated answer from S() may be INCONSISTENT
with a truly random permutation]

Let A be a non-repeating algorithm of complexity at most t queries.
Then

t2
22m+1

IPr[S(A)=1]-Pr[A™" () =1] <

Define a transcript a record of all oracle queries,
<(Xy, ¥;)s---(X, Y,) >. The output of the algorithm
is purely a function of the transcript.

Define consistent transcript T to be such that
X=X, <V =Y,

Consistent Transcripts

Also note that if the transcript is consistent, then
Pr[Tr(S)=0o]Tr(S) is consistent]

B 2—2mt B (22m _t)!
- 1 t—1.~ 92m
1= o)L= zm) 27!
11 1 @ -t

PITr(A™ ") = o]

T (2) T2 —t+)) 2™
That is when the transcripts are consistent then the experiment S
and IT cannot be distinguished.

| PrIS(A) =1]-Pr[A™"") =1]

=|Pr[S(A) =1|Tr(S) is consistent] Pr[Tr(S) is consistent]

+Pr[S(A) =1|Tr(S) is inconsistent] Pr[Tr(S) is inconsistent]

—Pr[A"™ () =1]Pr[Tr(S) is consistent]

—Pr[A™"" () =1]Pr[Tr(S) is inconsistent]|

<|(Pr[S(A) =1|Tr(S) is consistent]— Pr[A™™ " () =1]) Pr[Tr(S) is consistent]|
+|(Pr[S(A) =1|Tr(S) is inconsistent] - Pr[A™™ " () =1]) Pr[Tr(S) is inconsistent]|
< 0+Pr[Tr(S) is inconsistent]

2
S(t] 1t
2 22m 22m+1

2 2
PI[A™ ™ () =1]-Pr{S(A) =1] < Zt—+;_
Let T consist of all valid transcripts for which the algorithm A

returns 1.
| PrARR () =1]— Pr[S(A) =1]|
S PAIA™" « 7]-Pr[S(A) « 7])|

rel

Let T' < T, consist of the consistent transcripts (consistent
with a permutation).

Ay I(pr[Apﬁ‘pﬁl <~ 7]-Pr[S(A) «7])|
=y Pr[S(A)<—r]|£E ! i

2m 2m+1
TeT\T' 2 2 2

Bounding the other part will require the details of the
construction. Fix a transcript (x,, y;) € T . Each x, can be

written as (L)

4 rounds. After the j" round we have (L, R)).

,R"). This gets transformed due to the

Functions F, and F, are said to be good for the transcript

if (R, R;,...,R") and (L}, L3,..., %) do not have any repeatitions.
What happens when R;=R?

Ri=L} ®F,(R?)

Ri=LS@®FR(R))

= 0=} o LS®R(R])®R(R?)

The algorithm A is non-repeating, so (L2, R") is distinct.

Note R # RY, as otherwise L] = LS, and thus x; = ;.
Thus in the above equality the function F, is called at two distinct
points, thus the output is randomly chosen. Thus the probability
of the equality being satisfied is 2™ for a given i,j pair.

t2
2m+1 '

Likewise, 0=R} ® R’ ©F, (L) ©F, (L)

.

PR [Ei jelt], B=L]<

~Pr[3i, j e[t], R'=R}] <

2m+l '
t2
Thus, Pr. ¢ [F, F, not good for transcript] < o

Let us fix good functions F,,F,. We have:
Li=R{=L; ®F,R;)
RI=L ®F,(R{)=R; ®F,(L))
Thus, F,(R),F(L)=(L@®L R’ ®R)})
Note, (X;.y;) < Fz(Ril)st(LS;):(L?; DL, 1R? ®R;)
If we have good functions, F, and F,, the values
R? and L are distinct. Thus the occurence of (x;, y;)
is independent of i and thus the probability that a particular

transcript is obtained is exactly 2°™.

Note that this is the same as for the algorithm S(A).

Thus in this case we cannot distinguish both the algorithms and
A is unable to determine whether it is interacting with S(A)

or (P, P.Y).

AY PHIA™™ —-PIS(A) « o))

7eT’

< Z(Pr[APR'FE «7]| R, F, not good for 7)|)Pr[F,, F, not good for 7]

reT’
2

<
2m

10

Solve

« Complete the proof

11

