Formal Notions of Encryption

Debdeep Mukhopadhyay
lIT Kharagpur

Notion of Security

* “A Good disguise should not reveal the
person’s height”
— Shafi Goldwasser and Silvio Micali, 1982

Design of Encryption Algorithms

« Encryption algorithms are used for privacy
of data.
— which means they do not leak any information
about the plaintext
« The question is when are we satisfied that
the cipher really does not leak?

— For this we need to know the power of the
adversary.

Notations of Encryption

Enc takes as input a key, k € K, a message,
m e M, and outputs a ciphertext c € C.

The encryption algorithm is a probabilistic
algorithm, which means that the same, message
may yield a different ciphertext, if run multiple
times.

Thus, ¢ < Enc, (m).

Decryption must give the message

Vk e K and me M, ¢ « Enc, (m),
m = Dec, (c),
with probability 1.

The distribution of K and M are independent..
Pr[M=m] is the probability that the message is m.

Given the encryption scheme, the distribution over C is fully determined
by the distributions over K and M.

Notion of Perfect Secrecy

« The adversary likely knows the probability
distribution over M.

* The adversary observes the ciphertext
being generated.
— ldeally, however this ciphertext should not
leak any information. to the adversary.

— For any message, m, the a posteriori
probability that m was sent, should be same
as the a priori probability.

Formalization

DEFINITION 1
An encryption scheme (Gen,Enc,Dec) over a message

space M is perfectly secret if for every probability

distribution over M, every message me M, and

every ciphertext c e C for which Pr[C =c]>0:
Pr[M=m|C=c]=Pr[M=m]

Shannon formalized this concept, and
called it perfect secrecy.

An equivalent statement

DEFINITION 2

An encryption scheme (Gen,Enc,Dec) over a message
space M is perfectly secret if and only if for every probability

distribution over M, every message me M, and

every ciphertextceC
Pr[C=c|M=m]=Pr[C=c]

Perfect Indistinguishability

e A useful formulation.

* |t is impossible to distinguish an encryption
of m, from an encryption of m,.

» Thus the ciphertext distribution contains

no information of the plaintext.
| DEFINITION 3 |
An encryption scheme (Gen,Enc,Dec) over a message

space M s perfectly secret if and only if for every probability
distribution over M, every m,,m, € M, and
every ciphertextceC :

Pr[C=c|M=m,]=Pr[C=c|M=m,]

Proof

Assume perfect secrecy:
PrfC=c|M =my]=Pr[C=c]=Pr[C=c|M =m,]
Assume next that for every distribution over M,
every m,,m, € M, every ¢ € C, it holds that:
Pr[C=c|M=m,]=Pr[C=c|M=m,].
Define, p=Pr[C=c|M =m,].
Pr{C=c]=)_ Pr[C =c|M =m].Pr[M =m]

meM

= > p.PriM =m]

meM

=p >, Pr[M =m]=p

meM

=Pr[C=c|M =m]

What Shannon said?

« Shannon said in his classical work that
using a one-time pad, the cipher achieved
“perfect secrecy”

— no attacker, even with infinite power of
computation can obtain any information about
the plain-text.

— But the one-time pad is impractical.

Adversary’s Experiment

» The definition of perfect secrecy is based on an
experiment A.

« This experiment is essentially a game between
an adversary, A, who is trying to break a
cryptographic algorithm and an imaginary tester
who wishes to see if the adversary succeeds.

» The definition tries to formalize the inability of A
to distinguish the encryption of one plaintext
from the encryption of another plaintext.

The Experiment

Define experiment PrivkK ®® : Private-key encryption setting.
The experiment is defined for any encryption scheme:
IT=(Gen,Enc,Dec) over message space M and for any adversary
A.

The steps are defined as follows:

1. The adversary A outputs a pair of messages m,,m, € M .

2. Imaginary entity generates a random key k by running Gen,
and a random bit b «£—{0,1} is chosen.

Computes, ¢ « Enc,(m,) and gives it to A.

3. A outputs a bitb".

4. The output of the experiment is defined to be 1 if b'= b,
and 0 otherwise.

We write Privk [, =1 if the output is 1, and in this case we
say that A succeeded.

Adversarial definition of perfect
secrecy

DEFINITION 4

An encryption scheme (Gen,Enc,Dec) over a message
space M is perfectly secret if for every adversary A,

PrIPrivK = =1] :%

Proofs (Definition 1 => Definition 4)

The scheme is also perfectly secret for the message space

M ={m,,m}.

Thus, from message indistinguishability,

we have PrfceC,|m=m,]=Pr[ceC,|m=m].

S Adv, = Pr[Privk;T =1]=Pr[b=b"]

= Pr[b = 0] Pr[PrivK}, =1|b = 0]+ Pr[b = 1] Pr[PrivK T, =1|b =1]

:%(Pr[A outputs 0|b=0]+Pr[A outputs 1|b=1)

Definition 1 => Definition 4

Let Aoutputs 0 ifceC,, and outputs 1 if ce C,. Also, C=C, UC,.
Thus, we have

1
Adv, , = E(CZ PriceC,|m= mo]+; PrlceC,|m=m,])

=%(z PrlceC,|m= m1]+z PrlceC,|m=m,])
Co C,

=%(Z Pr[CEC|m=ml])=1

CouCy 2

Exercise

» Definition 4 => Definition 1.

Proof by contradiction

—Defn 1= —Defn 4
Assume that IT is not perfectly secret.

= 3m,,m, € M and a ciphertext ¢ e C st.
PrC=c|M =m,]=Pr[C=c|M =m,]

Define an A, st. A(C:E) =0,
A(C #) = b(random guess)

Advantage of A

PrPrivkyy, =1]=

%(Pr[PrieraV 1M =m,]+PrPrivK®, =1|M =m,])

All
PrPrivks =1|M =m]

= Pr[PrivK®, =1AC =c|M =my]+Pr[PrivK®, =1AC #c|M =m,]
=Pr[C =c|M =m,]Pr[PrivK® =1|C =¢,M =m]

+Pr[C = ¢c|M = m,]Pr[PrivK®), =1|C = ¢,M =m,]

=Pr[C=c|M =m0]+%Pr[C #C|M =m,]

Advantage of A

Likewise,
Pr[Privkyy, =1|M =m]
=Pr[PrivK®, =1AC =¢|M =m,]+Pr[PrivK®, =1AC #c|M =m,]

A Il

=0+Pr[C #c|M =m]Pr[Privk®, =1|C #¢,M =m,]

:%Pr[C £C|M=m]

10

The Contradiction

Pr{Privke), =1]=%(Pr[C =c|M =m0]+%Pr[C #c|M =m])+
11 -
—=Pr[C#c|M =m
25 [| 1]

1 - 1 -
=E(Pr[C =Cc|M = m0]+§(1—Pr[C =c|M =m]))
+%Pr[C¢E|M =m]

11

=_+Z(Pr[C=E| M =mo]+Pr[C¢E| M =m])

¢_+%(pr[c =c|M =m]+Pr[C £c|M =m])

One Time Pad

Let a®b denote the bit-wise XORof two binary strings,
aandb, a=a..a,b=Db..b and

a®b=a ®b..a SN

1. Fix an integer | > 0. Then the message space M,

key space K, and ciphertext space C are all equal

to {0,1}.

2. The key generation algorithm Gen works by

choosing a string from K ={0,1} uniformly.
3. Encryption Enc works as follows: given a
key k €{0,1}, outputc =k ®m.
4. Decryption Dec works as follows: given a
key k €{0,1}, outputm=k @c.

11

Proof of Perfect Secrecy

PrflC=c|M =m]=PriIM @K =c|M =m]

=Pr[m6’9K=c]:Pr[K:me'9c:]=i

2|

This holds true for any message belonging to M.

Large key space

Let (Gen, Enc, Dec) be a perfectly secret encryption scheme
over a message space M , and let K be the keyspace as
determined by Gen. Then |K || M |.

12

Proof

Assume |K |<|M |.

Let M (c) be the set of all possible messages which are possible
decryptions of the ciphertext c.

~.M(c) ={m|m = Dec,(c) for some k € K}

Clearly, IM(c)|<| K|, but | K |<| M | by assumption.

Thus, I3m'e M, but ¢ M (c).

PrIM =m'|C=c]=0=Pr[M =m"].

This violates definition 1.

Computational Security

» The previous schemes which are secured
against the unbounded adversary are called
information theoretic secured.

+ However they are not practical.

* In the practical world, we try to develop
computationally secured ciphers.

» These definitions are weaker than that of perfect
secrecy.

» But the proof techniques have to be still formally
stated, with assumptions etc.

13

What is computationally secured?

A cipher must be practically, if not
mathematically, indecipherable.

» Goal is to design a cipher which cannot be
broken in “reasonable time” with a
“reasonable probability of success”.

Mathematicians and Time

14

Relaxations from notion of perfect
secrecy
« Security is only preserved against efficient

adversaries that run in a feasible amount
of time.

» Adversaries can succeed with a very small
probability of success.

Two approaches

» Concrete approach: quantifies security of
a crypto scheme by explicitly bounding the
maximum success probability of any
adversary running for at most specified
amount of time.

A scheme is (t, &) —secure if every adversary running
for time at most t succeeds in breaking the scheme
with probability at most &.

15

Asymptotic Approach

This approach origins from complexity theory.

It views the running time of the adversary as well as its
success probability as functions of some parameter (not
concrete numbers).

The cryptographic scheme has a security parameter,
which is denoted by n.

The honest party initializes the scheme G, by choosing
n

This value is known to the adversary.

Running time of the honest parties and the adversary are
all functions of n.

The adversaries success probability is also a function of
n.

PPT

Probabilistic Algorithms or randomized
algorithms, A, may toss a coin a finite
number of times during its computation.

The output y, and the next step may
depend on the results of the preceding
coin tosses.

The coin is in general fair.

Examples: Primality test algorithms,
factoring algorithms etc.

16

Efficiency

* By efficient, we mean that for some
constants a, c, the algorithm runs in time
a.n¢, for the security parameter n.

— Honest parties are efficient.

— Adversaries with a run time which is
superpolynomial can be considered
“impractical”

Negligible Function

A function f is negligible if for every polynomial
p() there exists an N such that for all integers n > N

it holds that f (n) < 1
p(n)

17

Closure of negligible functions

 The function negl, defined by
negl;(n)=negl,(n)+negl,(n) is negligible

« For any positive polynomial p, the function
negl, defined by p(n).negl,(n) is negligible.

Negligible Probability

* Inverse polynomial: n*¢, for a constant c.

A function that grows slower than any
inverse polynomial.

« This means that for every constant c, if the
success probability of the adversary is
smaller than n¢, then the probability is said
to be negligible.

18

Informal Definition

* A scheme is secured if every PPT
adversary succeeds in breaking the
scheme with only negligible probability.
— useful for large values of n.

Consider a scheme where “an adversary

running for n3 minutes can succeed in
breaking the scheme with probability 2492,

Need n around 500 for the adversary to
run for more than 200 years to break with a
probability of 2-500,

Increase of Security Parameter

Consider a cryptographic scheme where honest
parties are required to run for 108n2 cycles.

An adversary running for 108n4 cycles can break
the scheme with probability 22021,

Consider a 1 GHz computer and n=50.

— Run time (honest parties)=2.5 sec, adversary run time
1 week, prob of succ=2-30.

Condsider a 16 GHz processor, n=100

— Run time (honest parties)=0.625 sec, adversary run
time 16 weeks, prob of succ=2-80,

‘ In general increase in n, will increase the security of the scheme.

19

Proofs by Reduction

 Central to provable cryptography

« Assumption: Some problem X cannot be
solved by any polynomial time algorithm
except with negligible probability.

« We want to prove that some cryptographic
construction (Pi) is secured, say in
computational sense.

General Proof method

1. Fix some efficient adversary A attacking IT.
Denote this adversary's success probability by (n).
2. Construct an efficient algorithm A" that attempts

to solve problem X using adversary A as a subroutine.

20

General Proof method

Note that A* knows nothing about how A works. It

only knows that A attempts to break IT. So, given an
instance x of X, the algorithm A" will simulate for A

an instance of IT st:

i) The view of A, when itisrun as a sub-routine of A"
should be distributed identically to the view of A, when it
is run directly with IT itself.

ii) If A succeeds in breaking the instance of IT, that is being
simulated by A', this will enable A' to solve the instance X
of X with a non-negligible probability (greater than an
inverse probability 1/p(n)

General Proof method

This implies we have an efficient algorithm A' which solves
problem X with a probability greater than g(n)/ p(n).
This contradicts the initial assumption.

Thus given the assumption regarding X, no efficient
adversary A can succeed in breaking IT with
probability that is not negligible.

21

Formalizing Computational
Security

Refining Definition 4 for
Computational Security

* We consider only adversaries running in
polynomial time.

» The adversary might determine the
encrypted message with probability
negligibly better than 7% .

22

Eavesdropping Indistinguishability
Experiment

Thus given the assumption regarding X, no efficient
adversary A can succeed in breaking IT with
probability that is not negligible.

1. The adversary A is given input 1", and outputs a
pair of messages m,, m, of the same length.

2. The key k is generated by running Gen(1"), and a
random bit b < {0,1} is chosen.

Eavesdropping Indistinguishability
Experiment

A ciphertext ¢ «— Enc, (m,) is computed and given
to A. We call ¢ the challenge ciphertext.

3. Aoutputsabitb'.

4. The output of the experiment is defined to be 1
if b'=b, and 0 otherwise.

If Privk’}; (n) =1, we say that A succeeded.

23

Formal Definition

A private key encryption scheme I'T=(Gen,Enc,Dec)
has indistinguishable encryptions in the presence of
an eavesdropper if for all probabilistic polynomial
adversaries A there exists a negligible function negl
such that:

Pr[Privi (n) =1]< %+ negl(n)

where the probability is taken over the random coins
used by A, as well as the random coins used in the expe
-riment (for choosing the key, the random bit b, and
any random coins used in the encryption process).

Definition of Semantic Security (SS)

For every distribution X over {0,1}" and

For every partial information h: {0,1}" —{0,1}"

For every interesting information f: {0,1}" —{0,1}

For every attacking algorithm A running in time

t' < t(n) [t(n) is a polynomial in n], there exists a

simulating algorithm S such that:

Pr,x [A(E,(m),h(m))= f (m)]<Pr, ,[S(h(m)) = f (m)]+&(n)

k<G(n)

Here g(n) is a negligible quantity.
Notion tries to attempt ideal security.

That is the eavesdropper is disconnected from the communication.

In spite of observing the ciphertext, he obtains no extra interesting
observation than the case when he has not seen the ciphertext.

24

Message Indistinguishability (Ml)

For every two messages m,, m, €{0,1}"
For every attacking algorithm A that runs in time < t(n)

Pr_ou [AE, (M) = i]s%w(n)

« SS and MI are equivalent

Proofs : SS => M|

If X ={m,,m}, f:f(m,)=0, f(m)=1 h(): empty output string
From SS, for every adversary A there is a simulator S, st.
Pr. x[A(E(m)) =i]<Pr ,[S() =i]+&(n)

k<G
Now, since the simulator receives no information:

Pr[S() =i]=1/2, regardless of S.

Thus, Pr,_, 3, [A(E(M;)) =i] < % +¢&(n)

k<G

25

MI => SS

For every m,,m, €{0,1}", for every algorithm A that
runs in time < t(n), for every a €{0,1},

PrkeG[A(Ek (ml)) = a] - PrkeG[A(Ek (mo)) = a] <2e (n)
(*)

(t,e) =Ml =>*=—(*) = —(t,e) - MI

Ml =>"~
Define, A‘(c):{ L it A(c).:a
0, otherwise
Pnke{oél}[A'(Ek (mi)) = i]
— P [AE (M) =01+ 2Pr,_[ATE (m) =]
— S -Pr,_[AGE (M) =a) +2Pr_[A(E,(m) =]
— 42 Pr [AE () =al-Pr_[A(E,(m))=2)

> %4— € (n) = (t,€) — Ml is violated.

26

(t,€)-MI=>(t',2¢)-SS

* Thus 4 (t',2€)-SS =>q (t,¢)-MI

define S(z), where z is some information on m
Pick k «— G at random
Return A(E, (m,), 2)
/* Note that the run time of S is running time of A+poly(n) */

(t,€)-MI=>(t',2¢)-SS

—(t,26)-SS=
Pl x[A(E(m),h(m)) = f (m)] > Pr,_, [S(h(m)) = f(m)]+2&(n)

or, Pr.,_[A(E(m),h(m)) = f(m)]

k<G

> Pr

m«X
k<G

or, Y. PrX =m](Pr. o [AE(X),h(X)) = f(X)]

—Pr[A(E(0), h(X)) = f(X)]) > 2£(n)
=3m'e X, st. Pr,_ ;[A(E(m’),h(m")) = f (m")]
—Prc[A(E(0),h(m?) = f (m)]) > 2¢(n)
= as there exists a pair of messages for which (*) does not hold
= (t,€) — MI does not hold.

[A(E(0), h(m)) = f(m)]+2¢(n)

