
1

Formal Notions of Encryption

Debdeep Mukhopadhyay

IIT Kharagpur

Notion of Security

• “A Good disguise should not reveal the
person’s height”
– Shafi Goldwasser and Silvio Micali, 1982

2

Design of Encryption Algorithms

• Encryption algorithms are used for privacy
of data.
– which means they do not leak any information

about the plaintext

• The question is when are we satisfied that
the cipher really does not leak?
– For this we need to know the power of the

adversary.

Notations of Encryption

 takes as input a key, , a message,

, and outputs a ciphertext .

Enc k K

m M c C


 

The encryption algorithm is a probabilistic

algorithm, which means that the same, message

may yield a different ciphertext, if run multiple

times.

Thus, ().kc Enc m

3

Decryption must give the message

 and , (),

 (),

with probability 1.

k

k

k K m M c Enc m

m Dec c

   



The distribution of K and M are independent..

Pr[M=m] is the probability that the message is m.

Given the encryption scheme, the distribution over C is fully determined
by the distributions over K and M.

Notion of Perfect Secrecy

• The adversary likely knows the probability
distribution over M.

• The adversary observes the ciphertext
being generated.
– Ideally, however this ciphertext should not

leak any information. to the adversary.

– For any message, m, the a posteriori
probability that m was sent, should be same
as the a priori probability.

4

Formalization

An encryption scheme (Gen,Enc,Dec) over a message

space is perfectly secret if for every probability

distribution over , every message , and

every ciphertext for which Pr[] 0 :

M

M m M

c C C c


  

 Pr[M=m|C=c]=Pr[M=m]

Shannon formalized this concept, and
called it perfect secrecy.

DEFINITION 1

An equivalent statement

An encryption scheme (Gen,Enc,Dec) over a message

space is perfectly secret if and only if for every probability

distribution over , every message , and

every ciphertext :

 Pr[C=c

M

M m M

c C




|M=m]=Pr[C=c]

DEFINITION 2

5

Perfect Indistinguishability
• A useful formulation.

• It is impossible to distinguish an encryption
of m0 from an encryption of m1.

• Thus the ciphertext distribution contains
no information of the plaintext.

0 1

An encryption scheme (Gen,Enc,Dec) over a message

space is perfectly secret if and only if for every probability

distribution over , every , , and

every ciphertext :

 Pr[C=c|M=m

M

M m m M

c C




0 1]=Pr[C=c|M=m]

DEFINITION 3

Proof

0 1

0 1

0 1

Assume perfect secrecy:

 Pr[|] Pr[] Pr[|]

Assume next that for every distribution over ,

every , , every , it holds that:

 Pr[C=c|M=m]=Pr[C=c|M=m].

Define, Pr[

C c M m C c C c M m

M

m m M c C

p

      

 

 0

0

|].

Pr[C=c]= Pr[|].Pr[]

 = .Pr[]

 = Pr[]

 = Pr[|]

m M

m M

m M

C c M m

C c M m M m

p M m

p M m p

C c M m







 

  



 

 







6

What Shannon said?

• Shannon said in his classical work that
using a one-time pad, the cipher achieved
“perfect secrecy”
– no attacker, even with infinite power of

computation can obtain any information about
the plain-text.

– But the one-time pad is impractical.

Adversary’s Experiment

• The definition of perfect secrecy is based on an
experiment A.

• This experiment is essentially a game between
an adversary, A, who is trying to break a
cryptographic algorithm and an imaginary tester
who wishes to see if the adversary succeeds.

• The definition tries to formalize the inability of A
to distinguish the encryption of one plaintext
from the encryption of another plaintext.

7

The Experiment
D efin e ex p erim en t P rivK : P riva te -k ey en cryp tio n se ttin g .

T h e ex p erim en t is d efin ed fo r an y en cryp tio n sch em e:

= (G en ,E n c,D ec) o ver m essag e sp ace an d fo r an y ad versary

.

T h e s tep s a re d efin ed as fo

ea v

M

A



0 1

llo w s:

1 . T h e ad versary o u tp u ts a p a ir o f m essag es , .

2 . Im ag in ary en tity g en era tes a ran d o m k ey b y ru n n in g G en ,

an d a ran d o m b it {0 ,1} is ch o sen .

C o m p u tes , () an d g ives it to .

3 .

R

k b

A m m M

k

b

c E nc m A






,

 A o u tp u ts a b it ' .

4 . T h e o u tp u t o f th e ex p erim en t is d efin ed to b e 1 if ' ,

an d 0 o th erw ise .

W e w rite P rivK = 1 if th e o u tp u t is 1 , an d in th is case w e

say th a t A su cceed ed .

ea v
A

b

b b





Adversarial definition of perfect
secrecy

,

An encryption scheme (Gen,Enc,Dec) over a message

space is perfectly secret if for every adversary A,

1
 Pr[Priv 1]

2
eav
A

M

K   

DEFINITION 4

8

Proofs (Definition 1 => Definition 4)

0 1

0 0 0 1

, ,

,

The scheme is also perfectly secret for the message space

{ , }.

Thus, from message indistinguishability,

we have Pr[|]= Pr[|].

Pr[Priv 1] Pr[']

Pr[0]Pr[Priv

eav
A A

ea
A

M m m

c C m m c C m m

Adv K b b

b K

 





   

    

  ,1| 0] Pr[1]Pr[Priv 1| 1]

1
(Pr[outputs 0|b=0]+Pr[outputs 1|b=1)

2

v eav
Ab b K b

A A

     



Definition 1 => Definition 4

0 1

0 1

0

0 1 0 1

, 0 0 1 1

0 1 1 1

1

 A outputs 0 if , and outputs 1 if . Also, .

Thus, we have

1
(Pr[|]+ Pr[|])

2

1
 = (Pr[|]+ Pr[|])

2

1
 = (Pr[|]

2

A
C C

C C

C

Let c C c C C C C

Adv c C m m c C m m

c C m m c C m m

c C m m



   

    

   

 

 

 

1

1
) .

2C



9

Exercise

• Definition 4 => Definition 1.

Proof by contradiction

0 1

0 1

Defn 1 Defn 4

Assume that is not perfectly secret.

, and a ciphertext st.

Pr[C= |] Pr[C= |]

m m M c C

c M m c M m

 


   

  

Define an A, st. A(C=) 0,

 A(C) (random guess)

c

c b



 

10

Advantage of A

,

, 0 , 1

, 0

, 0 , 0

0 , 0

0

Pr[PrivK 1]

1
(Pr[PrivK 1|] Pr[PrivK 1|])

2

Pr[PrivK 1|]

Pr[PrivK 1 |] Pr[PrivK 1 |]

Pr[|]Pr[PrivK 1| ,]

Pr[|]Pr[Pr

eav
A

eav eav
A A

eav
A

eav eav
A A

eav
A

M m M m

M m

C c M m C c M m

C c M m C c M m

C c M m



 



 



 

    

 

         

     

   , 0

0 0

ivK 1| ,]

1
Pr[|] Pr[|]

2

eav
A C c M m

C c M m C c M m

   

     

Advantage of A

, 1

, 1 , 1

1 , 1

1

Likewise,

Pr[PrivK 1|]

Pr[PrivK 1 |] Pr[PrivK 1 |]

0 Pr[|]Pr[PrivK 1| ,]

1
Pr[|]

2

eav
A

eav eav
A A

eav
A

M m

C c M m C c M m

C c M m C c M m

C c M m



 



 

         

      

  

11

The Contradiction

, 0 0

1

0 0

1

0 1

1 1

1 1
Pr[PrivK 1] (Pr[|] Pr[|])

2 2
1 1

Pr[|]
2 2

1 1
(Pr[|] (1 Pr[|]))

2 2
1

Pr[|]
4
1 1

(Pr[|] Pr[|])
4 4
1 1

(Pr[|] Pr[|])
4 4
1

2

eav
A C c M m C c M m

C c M m

C c M m C c M m

C c M m

C c M m C c M m

C c M m C c M m

        

 

      

  

      

      



One Time Pad

1 1

1 1

Let denote the bit-wise XORof two binary strings,

 and , ... , ... and

...

1. Fix an integer 0. Then the message space ,

key space , and ciphertext space are all equa

l l

l l

a b

a b a a a b b b

a b a b a b

l M

K C


 

   


l

to {0,1} .

2. The key generation algorithm Gen works by

choosing a string from {0,1} uniformly.

3. Encryption Enc works as follows: given a

key {0,1} , output .

4. Decryption Dec works as fol

l

l

l

K

k c k m



  
lows: given a

key {0,1} , output .lk m k c  

12

Proof of Perfect Secrecy

Pr[|] Pr[|]

1
Pr[] Pr[]

2
This holds true for any message belonging to .

l

C c M m M K c M m

m K c K m c

M

     

      

Large key space

Let (, ,) be a perfectly secret encryption scheme

over a message space , and let be the keyspace as

determined by Gen. Then | | | | .

Gen Enc Dec

M K

K M

13

Proof

Assume | | | | .

Let () be the set of all possible messages which are possible

decryptions of the ciphertext .

() { | () for some }

Clearly, | () | | |, but | | | | by assumption.

Thus, '

k

K M

M c

c

M c m m Dec c k K

M c K K M

m



   

 
 , but ().

Pr[' |] 0 Pr['].

This violates definition 1.

M M c

M m C c M m

 
    

Computational Security

• The previous schemes which are secured
against the unbounded adversary are called
information theoretic secured.

• However they are not practical.
• In the practical world, we try to develop

computationally secured ciphers.
• These definitions are weaker than that of perfect

secrecy.
• But the proof techniques have to be still formally

stated, with assumptions etc.

14

What is computationally secured?

• A cipher must be practically, if not
mathematically, indecipherable.

• Goal is to design a cipher which cannot be
broken in “reasonable time” with a
“reasonable probability of success”.

Mathematicians and Time

15

Relaxations from notion of perfect
secrecy

• Security is only preserved against efficient
adversaries that run in a feasible amount
of time.

• Adversaries can succeed with a very small
probability of success.

Two approaches

• Concrete approach: quantifies security of
a crypto scheme by explicitly bounding the
maximum success probability of any
adversary running for at most specified
amount of time.

A scheme is (,) secure if every adversary running

for time at most succeeds in breaking the scheme

with probability at most .

t

t







16

Asymptotic Approach

• This approach origins from complexity theory.
• It views the running time of the adversary as well as its

success probability as functions of some parameter (not
concrete numbers).

• The cryptographic scheme has a security parameter,
which is denoted by n.

• The honest party initializes the scheme G, by choosing
n.

• This value is known to the adversary.
• Running time of the honest parties and the adversary are

all functions of n.
• The adversaries success probability is also a function of

n.

PPT

• Probabilistic Algorithms or randomized
algorithms, A, may toss a coin a finite
number of times during its computation.

• The output y, and the next step may
depend on the results of the preceding
coin tosses.

• The coin is in general fair.
• Examples: Primality test algorithms,

factoring algorithms etc.

17

Efficiency

• By efficient, we mean that for some
constants a, c, the algorithm runs in time
a.nc, for the security parameter n.
– Honest parties are efficient.

– Adversaries with a run time which is
superpolynomial can be considered
“impractical”

Negligible Function

A function is negligible if for every polynomial

() there exists an such that for all integers

1
it holds that ()

()

f

p N n N

f n
p n





18

Closure of negligible functions

• The function negl3 defined by
negl3(n)=negl1(n)+negl2(n) is negligible

• For any positive polynomial p, the function
negl4 defined by p(n).negl1(n) is negligible.

Negligible Probability

• Inverse polynomial: n-c, for a constant c.

• A function that grows slower than any
inverse polynomial.

• This means that for every constant c, if the
success probability of the adversary is
smaller than n-c, then the probability is said
to be negligible.

19

Informal Definition

• A scheme is secured if every PPT
adversary succeeds in breaking the
scheme with only negligible probability.
– useful for large values of n.

Consider a scheme where “an adversary
running for n3 minutes can succeed in
breaking the scheme with probability 2402-n.

Need n around 500 for the adversary to
run for more than 200 years to break with a
probability of 2-500.

Increase of Security Parameter

• Consider a cryptographic scheme where honest
parties are required to run for 106n2 cycles.

• An adversary running for 108n4 cycles can break
the scheme with probability 2202-n.

• Consider a 1 GHz computer and n=50.
– Run time (honest parties)=2.5 sec, adversary run time

1 week, prob of succ=2-30.

• Condsider a 16 GHz processor, n=100
– Run time (honest parties)=0.625 sec, adversary run

time 16 weeks, prob of succ=2-80.

In general increase in n, will increase the security of the scheme.

20

Proofs by Reduction

• Central to provable cryptography

• Assumption: Some problem X cannot be
solved by any polynomial time algorithm
except with negligible probability.

• We want to prove that some cryptographic
construction (Pi) is secured, say in
computational sense.

General Proof method

1. Fix some efficient adversary attacking .

Denote this adversary's success probability by ().

2. Construct an efficient algorithm ' that attempts

to solve problem using adversary as a subrout

A

n

A

X A




ine.

21

General Proof method

N o te th a t ' k n o w s n o th in g ab o u t h o w w o rk s . It

o n ly k n o w s th a t a ttem p ts to b reak . S o , g iven an

in s tan ce x o f X , th e a lg o rith m ' w ill s im u la te fo r

an in stan ce o f s t:

 i) T h e v iew o f , w h en i

A A

A

A A

A




t is ru n as a su b -ro u tin e o f '

sh o u ld b e d is trib u ted id en tica lly to th e view o f , w h en it

is ru n d irec tly w ith itse lf.

ii) If su cceed s in b reak in g th e in stan ce o f , th a t is b e in g

s im u la ted b y '

A

A

A

A




, th is w ill en ab le ' to so lve th e in stan ce x

o f X w ith a n o n -n eg lig ib le p ro b ab ility (g rea ter th an an

in verse p ro b ab ility 1 /p (n)

A

General Proof method

This implies we have an efficient algorithm ' which solves

problem X with a probability greater than () / ().

This contradicts the initial assumption.

A

n p n

Thus given the assumption regarding X, no efficient

adversary can succeed in breaking with

probability that is not negligible.

A 

22

Formalizing Computational
Security

Refining Definition 4 for
Computational Security

• We consider only adversaries running in
polynomial time.

• The adversary might determine the
encrypted message with probability
negligibly better than ½ .

23

Eavesdropping Indistinguishability
Experiment

Thus given the assumption regarding X, no efficient

adversary can succeed in breaking with

probability that is not negligible.

1. The adversary is given input 1 , and outputs a

pair of messages

n

A

A



0 1 , of the same length.

2. The key is generated by running Gen(1), and a

random bit {0,1} is chosen.

n

m m

k

b 

Eavesdropping Indistinguishability
Experiment

,

A ciphertext () is computed and given

to . We call the challenge ciphertext.

3. outputs a bit '.

4. The output of the experiment is defined to be 1

if b'=b, and 0 otherwise.

If PrivK

k b

eav
A

c Enc m

A c

A b





() 1, we say that succeeded.n A

24

Formal Definition
A private key encryption scheme =(Gen,Enc,Dec)

has indistinguishable encryptions in the presence of

an eavesdropper if for all probabilistic polynomial

adversaries there exists a negligible functioA



,

n

such that:

1
 Pr[Priv () 1] ()

2
where the probability is taken over the random coins

used by , as well as the random coins used in the expe

-riment (for choosing the key, the

eav
A

negl

n negl n

A

   

random bit b, and

any random coins used in the encryption process).

Definition of Semantic Security (SS)

• Here ε(n) is a negligible quantity.

• Notion tries to attempt ideal security.

• That is the eavesdropper is disconnected from the communication.
• In spite of observing the ciphertext, he obtains no extra interesting

observation than the case when he has not seen the ciphertext.

*

For every distribution over {0,1} and

For every partial information : {0,1} {0,1}

For every interesting information f: {0,1} {0,1}

For every attacking algorithm A running in time

t' t(n) [t(n)

n

n n

n

X

h 





m X
()

 is a polynomial in n], there exists a

simulating algorithm S such that:

Pr [((), ()) ()] Pr [(()) ()] ()k m X
k G n

A E m h m f m S h m f m n 


   

25

Message Indistinguishability (MI)

• SS and MI are equivalent

0 1

i {0,1}

For every two messages , {0,1}

For every attacking algorithm A that runs in time t(n)

1
Pr [(())] ()

2

n

k i
k G

m m

A E m i n






  

Proofs : SS => MI

0 1 0 1

m X

If { , }, : () 0, () 1, h(): empty output string

From SS, for every adversary A there is a simulator S, st.

Pr [(())] Pr [()] ()

Now, since the simulator receives no information

m X
k G

X m m f f m f m

A E m i S i n 


  

   

i {0,1}

:

Pr[()] 1/ 2, regardless of .

1
Thus, Pr [(())] ()

2i
k G

S i S

A E m i n


 

  

26

MI => SS

0 1

*

1 0

For every , {0,1} , for every algorithm A that

runs in time (), for every {0,1} ,

Pr [(())] Pr [(())] 2 ()

(*)

(,) * (*) (,)

n

k G k k G k

m m

t n a

A E m a A E m a n

t MI t MI

 



 
    

       

MI => *

i {0,1}

0 1

0 1

1

1, if ()
Define, '()=

0, otherwise

Pr ['(())]

1 1
Pr ['(()) 0] Pr ['(()) 1]

2 2
1 1

(1 Pr [(())]) Pr [(())]
2 2
1 1

(Pr [(())] Pr [((
2 2

k G k G

k G k G

k G k G

k i
k G

k k

k k

k k

A c a
A c

A E m i

A E m A E m

A E m a A E m a

A E m a A E

 

 

 








 

   

    

    0))])

1
() (,) is violated.

2

m a

n t MI



    

27

(t,ε)-MI=>(t’,2ε)-SS

• Thus ┐(t’,2ε)-SS =>┐ (t,ε)-MI

0

define (), where z is some information on m

 Pick k at random

 Return ((),)

/* Note that the run time of S is running time of A+poly(n) */
k

S z

G

A E m z



(t,ε)-MI=>(t’,2ε)-SS

m X

m X

m X

m

(t',2)-SS

Pr [((), ()) ()] Pr [(()) ()] 2 ()

, Pr [((), ()) ()]

 Pr [((0), ()) ()] 2 ()

, Pr[](Pr [((), ()) (

m X
k G

k G

k G

k G

A E m h m f m S h m f m n

or A E m h m f m

A E h m f m n

or X m A E X h X f X






 










 
   



  

 )]

 Pr [((0), ()) ()]) 2 ()

' , st. Pr [(('), (')) (')]

 Pr [((0), (')) (')]) 2 ()

as there exists a pair of messag

k G

k G

k G

A E h X f X n

m X A E m h m f m

A E h m f m n











  

   

  

 es for which (*) does not hold

(,) does not hold.t MI  

