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Notion of Security

• “A Good disguise should not reveal the 
person’s height”
– Shafi Goldwasser and Silvio Micali, 1982
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Design of Encryption Algorithms

• Encryption algorithms are used for privacy 
of data.
– which means they do not leak any information 

about the plaintext

• The question is when are we satisfied that 
the cipher really does not leak?
– For this we need to know the power of the 

adversary.

Notations of Encryption

 takes as input a key, ,  a message, 

,  and outputs a ciphertext .

Enc k K

m M c C


 

The encryption algorithm is a probabilistic 

algorithm, which means that the same, message 

may yield a different ciphertext, if run multiple 

times. 

Thus, ( ).kc Enc m
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Decryption must give the message

 and ,  ( ),

               ( ),

with probability 1.

k

k

k K m M c Enc m

m Dec c

   



The distribution of K and M are independent..

Pr[M=m] is the probability that the message is m.

Given the encryption scheme, the distribution over C is fully determined 
by the distributions over K and M.

Notion of Perfect Secrecy

• The adversary likely knows the probability 
distribution over M.

• The adversary observes the ciphertext
being generated. 
– Ideally, however this ciphertext should not 

leak any information. to the adversary.

– For any message, m, the a posteriori 
probability that m was sent, should be same 
as the a priori probability. 
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Formalization

An encryption scheme (Gen,Enc,Dec) over a message 

space  is perfectly secret if for every probability 

distribution over ,  every message ,  and 

every ciphertext  for which Pr[ ] 0 :

            

M

M m M

c C C c


  

  Pr[M=m|C=c]=Pr[M=m]

Shannon formalized this concept, and 
called it perfect secrecy.

DEFINITION 1

An equivalent statement

An encryption scheme (Gen,Enc,Dec) over a message 

space  is perfectly secret if and only if for every probability 

distribution over ,  every message ,  and 

every ciphertext  :

             Pr[C=c

M

M m M

c C




|M=m]=Pr[C=c]

DEFINITION 2
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Perfect Indistinguishability
• A useful formulation.

• It is impossible to distinguish an encryption 
of m0 from an encryption of m1. 

• Thus the ciphertext distribution contains 
no information of the plaintext.

0 1

An encryption scheme (Gen,Enc,Dec) over a message 

space  is perfectly secret if and only if for every probability 

distribution over ,  every , ,  and 

every ciphertext  :

             Pr[C=c|M=m

M

M m m M

c C




0 1]=Pr[C=c|M=m ]

DEFINITION 3

Proof

0 1

0 1

0 1

Assume perfect secrecy:

          Pr[ | ] Pr[ ] Pr[ | ]

Assume next that for every distribution over ,

every , ,  every ,  it holds that:

        Pr[C=c|M=m ]=Pr[C=c|M=m ].

Define, Pr[

C c M m C c C c M m

M

m m M c C

p

      

 

 0

0

| ].

Pr[C=c]= Pr[ | ].Pr[ ]

             = .Pr[ ]

             = Pr[ ]

             = Pr[ | ]

m M

m M

m M

C c M m

C c M m M m

p M m

p M m p

C c M m
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What Shannon said?

• Shannon said in his classical work that 
using a one-time pad, the cipher achieved 
“perfect secrecy”
– no attacker, even with infinite power of 

computation can obtain any information about 
the plain-text.

– But the one-time pad is impractical.

Adversary’s Experiment

• The definition of perfect secrecy is based on an 
experiment A.

• This experiment is essentially a game between 
an adversary, A, who is trying to break a 
cryptographic algorithm and an imaginary tester 
who wishes to see if the adversary succeeds.

• The definition tries to formalize the inability of A 
to distinguish the encryption of one plaintext 
from the encryption of another plaintext.
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The Experiment
D efin e  ex p erim en t P rivK  : P riva te -k ey en cryp tio n  se ttin g .

T h e ex p erim en t is  d efin ed  fo r an y en cryp tio n  sch em e:

= (G en ,E n c,D ec) o ver m essag e  sp ace   an d  fo r an y ad versary 

.

T h e s tep s  a re  d efin ed  as  fo

ea v

M

A



0 1

llo w s:

1 . T h e  ad versary  o u tp u ts  a  p a ir o f m essag es , .

2 . Im ag in ary en tity g en era tes  a  ran d o m  k ey  b y ru n n in g  G en , 

an d  a  ran d o m  b it {0 ,1} is  ch o sen .

C o m p u tes , ( )  an d  g ives  it to  .

3 .

R

k b

A m m M

k

b

c E nc m A






,

 A  o u tp u ts  a  b it ' .

4 . T h e  o u tp u t o f th e  ex p erim en t is  d efin ed  to  b e  1  if ' ,  

an d  0  o th erw ise . 

W e w rite  P rivK = 1  if th e  o u tp u t is  1 , an d   in  th is  case  w e  

say th a t A  su cceed ed . 

ea v
A

b

b b





Adversarial definition of perfect 
secrecy

,

An encryption scheme (Gen,Enc,Dec) over a message 

space  is perfectly secret if for every adversary A, 

1
                  Pr[Priv 1]

2
eav
A

M

K   

DEFINITION 4
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Proofs (Definition 1 => Definition 4)

0 1

0 0 0 1

, ,

,

The scheme is also perfectly secret for the message space 

{ , }.

Thus, from message indistinguishability, 

we have Pr[ | ]= Pr[ | ].

Pr[Priv 1] Pr[ ']

Pr[ 0]Pr[Priv

eav
A A

ea
A

M m m

c C m m c C m m

Adv K b b

b K

 





   

    

  ,1| 0] Pr[ 1]Pr[Priv 1| 1]

1
(Pr[  outputs 0|b=0]+Pr[  outputs 1|b=1)

2

v eav
Ab b K b

A A

     



Definition 1 => Definition 4

0 1

0 1

0

0 1 0 1

, 0 0 1 1

0 1 1 1

1

 A outputs 0 if , and outputs 1 if . Also, .

Thus, we have 

1
( Pr[ | ]+ Pr[ | ])

2

1
            = ( Pr[ | ]+ Pr[ | ])

2

1
            = ( Pr[ | ]

2

A
C C

C C

C

Let c C c C C C C

Adv c C m m c C m m

c C m m c C m m

c C m m



   

    

   

 

 

 

1

1
) .

2C
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Exercise

• Definition 4 => Definition 1.

Proof by contradiction

0 1

0 1

Defn 1 Defn 4

Assume that  is not perfectly secret. 

,  and a ciphertext  st. 

Pr[C= | ] Pr[C= | ]

m m M c C

c M m c M m

 


   

  

Define an A, st. A(C= ) 0,

                         A(C ) (random guess)

c

c b
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Advantage of A

,

, 0 , 1

, 0

, 0 , 0

0 , 0

0

Pr[PrivK 1]

1
(Pr[PrivK 1| ] Pr[PrivK 1| ])

2

Pr[PrivK 1| ]

Pr[PrivK 1 | ] Pr[PrivK 1 | ]

Pr[ | ]Pr[PrivK 1| , ]

Pr[ | ]Pr[Pr

eav
A

eav eav
A A

eav
A

eav eav
A A

eav
A

M m M m

M m

C c M m C c M m

C c M m C c M m

C c M m



 



 



 

    

 

         

     

   , 0

0 0

ivK 1| , ]

1
Pr[ | ] Pr[ | ]

2

eav
A C c M m

C c M m C c M m

   

     

Advantage of A

, 1

, 1 , 1

1 , 1

1

Likewise, 

Pr[PrivK 1| ]

Pr[PrivK 1 | ] Pr[PrivK 1 | ]

0 Pr[ | ]Pr[PrivK 1| , ]

1
Pr[ | ]

2

eav
A

eav eav
A A

eav
A

M m

C c M m C c M m

C c M m C c M m

C c M m



 



 

         

      

  



11

The Contradiction

, 0 0

1

0 0

1

0 1

1 1

1 1
Pr[PrivK 1] (Pr[ | ] Pr[ | ])

2 2
1 1

Pr[ | ]
2 2

1 1
(Pr[ | ] (1 Pr[ | ]))

2 2
1

Pr[ | ]
4
1 1

(Pr[ | ] Pr[ | ])
4 4
1 1

(Pr[ | ] Pr[ | ])
4 4
1

2

eav
A C c M m C c M m

C c M m

C c M m C c M m

C c M m

C c M m C c M m

C c M m C c M m

        

 

      

  

      

      



One Time Pad

1 1

1 1

Let  denote the bit-wise XORof two binary strings, 

 and ,  ... , ...  and 

...

1. Fix an integer 0. Then the message space ,

key space ,  and ciphertext space  are all equa

l l

l l

a b

a b a a a b b b

a b a b a b

l M

K C


 

   


l 

to {0,1} .

2. The key generation algorithm Gen works by 

choosing a string from {0,1}  uniformly.

3. Encryption Enc works as follows: given a 

key {0,1} ,  output .

4. Decryption Dec works as fol

l

l

l

K

k c k m



  
lows: given a 

key {0,1} ,  output .lk m k c  
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Proof of Perfect Secrecy

Pr[ | ] Pr[ | ]

1
Pr[ ] Pr[ ]

2
This holds true for any message belonging to .

l

C c M m M K c M m

m K c K m c

M

     

      

Large key space

Let ( , , ) be a perfectly secret encryption scheme 

over a message space  , and let  be the keyspace as 

determined by Gen. Then | | | | .

Gen Enc Dec

M K

K M
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Proof

Assume | | | | .

Let ( ) be the set of all possible messages which are possible 

decryptions of the ciphertext .

( ) { | ( ) for some }

Clearly, | ( ) | | |,  but | | | |  by assumption. 

Thus, '

k

K M

M c

c

M c m m Dec c k K

M c K K M

m



   

 
 ,  but ( ).

Pr[ ' | ] 0 Pr[ '].

This violates definition 1.

M M c

M m C c M m

 
    

Computational Security

• The previous schemes which are secured 
against the unbounded adversary are called 
information theoretic secured.

• However they are not practical.
• In the practical world, we try to develop 

computationally secured ciphers.
• These definitions are weaker than that of perfect 

secrecy.
• But the proof techniques have to be still formally 

stated, with assumptions etc.
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What is computationally secured?

• A cipher must be practically, if not 
mathematically, indecipherable.

• Goal is to design a cipher which cannot be 
broken in “reasonable time” with a 
“reasonable probability of success”.

Mathematicians and Time
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Relaxations from notion of perfect 
secrecy

• Security is only preserved against efficient 
adversaries that run in a feasible amount 
of time.

• Adversaries can succeed with a very small 
probability of success.

Two approaches

• Concrete approach: quantifies security of 
a crypto scheme by explicitly bounding the 
maximum success probability of any 
adversary running for at most specified 
amount of time.

A scheme is ( , ) secure if every adversary running 

for time at most  succeeds in breaking the scheme 

with probability at most .

t

t
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Asymptotic Approach

• This approach origins from complexity theory.
• It views the running time of the adversary as well as its 

success probability as functions of some parameter (not 
concrete numbers).

• The cryptographic scheme has a security parameter, 
which is denoted by n.

• The honest party initializes the scheme G, by choosing 
n.

• This value is known to the adversary.
• Running time of the honest parties and the adversary are 

all functions of n.
• The adversaries success probability is also a function of 

n.

PPT 

• Probabilistic Algorithms or randomized 
algorithms, A, may toss a coin a finite 
number of times during its computation.

• The output y, and the next step may 
depend on the results of the preceding 
coin tosses.

• The coin is in general fair.
• Examples: Primality test algorithms, 

factoring algorithms etc.
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Efficiency

• By efficient, we mean that for some 
constants a, c, the algorithm runs in time 
a.nc, for the security parameter n.
– Honest parties are efficient.

– Adversaries with a run time which is 
superpolynomial can be considered 
“impractical”

Negligible Function

A function  is negligible if for every polynomial 

( ) there exists an  such that for all integers  

1
it holds that ( )

( )

f

p N n N

f n
p n
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Closure of negligible functions

• The function negl3 defined by 
negl3(n)=negl1(n)+negl2(n) is negligible

• For any positive polynomial p, the function 
negl4 defined by p(n).negl1(n) is negligible.

Negligible Probability

• Inverse polynomial: n-c, for a constant c.

• A function that grows slower than any 
inverse polynomial.

• This means that for every constant c, if the 
success probability of the adversary is 
smaller than n-c, then the probability is said 
to be negligible.
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Informal Definition

• A scheme is secured if every PPT 
adversary succeeds in breaking the 
scheme with only negligible probability.
– useful for large values of n.

Consider a scheme where “an adversary 
running for n3 minutes can succeed in 
breaking the scheme with probability 2402-n.

Need n around 500 for the adversary to 
run for more than 200 years to break with a 
probability of 2-500.  

Increase of Security Parameter

• Consider a cryptographic scheme where honest 
parties are required to run for 106n2 cycles.

• An adversary running for 108n4 cycles can break 
the scheme with probability 2202-n.

• Consider a 1 GHz computer and n=50. 
– Run time (honest parties)=2.5 sec, adversary run time 

1 week, prob of succ=2-30.

• Condsider a 16 GHz processor, n=100
– Run time (honest parties)=0.625 sec, adversary run 

time 16 weeks, prob of succ=2-80.

In general increase in n, will increase the security of the scheme.
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Proofs by Reduction

• Central to provable cryptography

• Assumption: Some problem X cannot be 
solved by any polynomial time algorithm 
except with negligible probability.

• We want to prove that some cryptographic 
construction (Pi) is secured, say in 
computational sense.

General Proof method

1. Fix some efficient adversary  attacking .

Denote this adversary's success probability by ( ).

2. Construct an efficient algorithm '  that attempts 

to solve problem  using adversary  as a subrout

A

n

A

X A




ine.
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General Proof method

N o te  th a t '  k n o w s n o th in g  ab o u t h o w   w o rk s . It 

o n ly k n o w s th a t  a ttem p ts  to  b reak  . S o , g iven  an  

in s tan ce  x  o f X , th e  a lg o rith m  '  w ill s im u la te  fo r  

an  in stan ce  o f  s t:

 i) T h e  v iew  o f ,  w h en  i

A A

A

A A

A




t is  ru n  as  a  su b -ro u tin e  o f '  

sh o u ld  b e  d is trib u ted  id en tica lly to  th e view  o f ,  w h en  it 

is  ru n  d irec tly w ith   itse lf.

ii) If  su cceed s  in  b reak in g  th e  in stan ce  o f , th a t is  b e in g  

s im u la ted  b y '

A

A

A

A




, th is  w ill en ab le  '  to  so lve  th e  in stan ce  x  

o f X  w ith  a  n o n -n eg lig ib le  p ro b ab ility (g rea ter th an  an  

in verse  p ro b ab ility 1 /p (n )

A

General Proof method

This implies we have an efficient algorithm '  which solves 

problem X with a probability greater than ( ) / ( ).

This contradicts the initial assumption.  

A

n p n

Thus given the assumption regarding X, no efficient 

adversary  can succeed in breaking  with 

probability that is not negligible.  

A 
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Formalizing Computational 
Security

Refining Definition 4 for 
Computational Security

• We consider only adversaries running in 
polynomial time.

• The adversary might determine the 
encrypted message with probability 
negligibly better than ½ .
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Eavesdropping Indistinguishability
Experiment

Thus given the assumption regarding X, no efficient 

adversary  can succeed in breaking  with 

probability that is not negligible.  

1. The adversary  is given input 1 ,  and outputs a 

pair of messages

n

A

A



0 1 ,  of the same length.

2. The key  is generated by running Gen(1 ),  and a 

random bit {0,1} is chosen. 

n

m m

k

b 

Eavesdropping Indistinguishability
Experiment

,

A ciphertext ( ) is computed and given 

to . We call  the challenge ciphertext.

3.  outputs a bit '.

4. The output of the experiment is defined to be 1 

if b'=b, and 0 otherwise. 

If PrivK

k b

eav
A

c Enc m

A c

A b





( ) 1,  we say that  succeeded.n A
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Formal Definition 
A private key encryption scheme =(Gen,Enc,Dec) 

has indistinguishable encryptions in the presence of 

an eavesdropper if for all probabilistic polynomial 

adversaries  there exists a negligible functioA



,

n 

such that:

1
           Pr[Priv ( ) 1] ( )

2
where the probability is taken over the random coins 

used by ,  as well as the random coins used in the expe

-riment (for choosing the key, the 

eav
A

negl

n negl n

A

   

random bit b, and 

any random coins used in the encryption process).

Definition of Semantic Security (SS)

• Here ε(n) is a negligible quantity.

• Notion tries to attempt ideal security.

• That is the eavesdropper is disconnected from the communication.
• In spite of observing the ciphertext, he obtains no extra interesting 

observation than the case when he has not seen the ciphertext.  

*

For every distribution  over {0,1}  and 

For every partial information :  {0,1} {0,1}

For every interesting information f: {0,1} {0,1}

For every attacking algorithm A running in time 

t'  t(n) [t(n)

n

n n

n

X

h 





m X
( )

 is a polynomial in n], there exists a 

simulating algorithm S such that:

Pr [ ( ( ), ( )) ( )] Pr [ ( ( )) ( )] ( )k m X
k G n

A E m h m f m S h m f m n 


   



25

Message Indistinguishability (MI)

• SS and MI are equivalent

0 1

i {0,1}

For every two messages , {0,1}

For every attacking algorithm A that runs in time  t(n)

1
Pr [ ( ( )) ] ( )

2

n

k i
k G

m m

A E m i n






  

Proofs : SS => MI

0 1 0 1

m X

If { , }, : ( ) 0,  ( ) 1,  h(): empty output string

From SS, for every adversary A there is a simulator S, st.

Pr [ ( ( )) ] Pr [ () ] ( )

Now, since the simulator receives no information

m X
k G

X m m f f m f m

A E m i S i n 


  

   

i {0,1}

:

Pr[ () ] 1/ 2, regardless of .

1
Thus, Pr [ ( ( )) ] ( )

2i
k G

S i S

A E m i n
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MI => SS

0 1

*

1 0

For every , {0,1} ,  for every algorithm A that 

runs in time  ( ),  for every {0,1} ,

Pr [ ( ( )) ] Pr [ ( ( )) ] 2 ( )

(*)

( , ) * (*) ( , )

n

k G k k G k

m m

t n a

A E m a A E m a n

t MI t MI

 



 
    

       

MI => *

i {0,1}

0 1

0 1

1

1,  if ( )
Define, '( )=

0,  otherwise    

Pr [ '( ( )) ]

1 1
Pr [ '( ( )) 0] Pr [ '( ( )) 1]

2 2
1 1

(1 Pr [ ( ( )) ]) Pr [ ( ( )) ]
2 2
1 1

(Pr [ ( ( )) ] Pr [ ( (
2 2

k G k G

k G k G

k G k G

k i
k G

k k

k k

k k

A c a
A c

A E m i

A E m A E m

A E m a A E m a

A E m a A E

 

 

 








 

   

    

    0 )) ])

1
( ) ( , )  is violated.

2

m a

n t MI
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(t,ε)-MI=>(t’,2ε)-SS

• Thus ┐(t’,2ε)-SS =>┐ (t,ε)-MI

0

define ( ),  where z is some information on m

        Pick k  at random

        Return ( ( ), )

/* Note that the run time of S is running time of A+poly(n) */
k

S z

G

A E m z



(t,ε)-MI=>(t’,2ε)-SS

m X

m X

m X

m

(t',2 )-SS

Pr [ ( ( ), ( )) ( )] Pr [ ( ( )) ( )] 2 ( )

,  Pr [ ( ( ), ( )) ( )]

                                  Pr [ ( (0), ( )) ( )] 2 ( )

,  Pr[ ](Pr [ ( ( ), ( )) (

m X
k G

k G

k G

k G

A E m h m f m S h m f m n

or A E m h m f m

A E h m f m n

or X m A E X h X f X






 










 
   



  

  )]

                              Pr [ ( (0), ( )) ( )]) 2 ( )

' ,  st. Pr [ ( ( '), ( ')) ( ')]

                              Pr [ ( (0), ( ')) ( ')]) 2 ( )

as there exists a pair of messag

k G

k G

k G

A E h X f X n

m X A E m h m f m

A E h m f m n











  

   

  

 es for which (*) does not hold

( , )  does not hold.t MI  


