Digital Signatures

Debdeep Mukhopadhyay
[IT Kharagpur

What are Signature Schemes?

* Provides message integrity in the public key
setting

« Counter-parts of the message authentication
schemes in the public setting

+ Allow a signer S who has established a public
key, pk, can sign a message with his own secret
key.

« Anybody who knows pk, and knows that the
public key was originates by S, can verify the
signature.

— Several applications
— Distribution of patches by a software company.

DSA vs MAC

Both are used for integrity.

Verification of MACs rely on the private
key setting.

However verification of the DSA is based

on public key setting.

— signatures are publicly verifiable.

— signatures are transferable.

— signatures provide non-repudiation.

Definition

A signature scheme is a tuple of three PPT algorithms:
(Gen,Sign,Vrfy) satisfying the following:

1. The key-generation algorithm Gen takes as input

a security parameter n, and outputs a pair of keys (pk,sk).
pk is the public key and sk is the secret key. Assume both
have length n.

2. The signing algorithm Sign, takes as input a private key
sk and a message m < {0,1}".

It outputs a signature o, denoted as o « Sign (m).

3. The deterministic verification algorithm Vrfy takes as
input a public key pk, and a message m, and a signature o.
It outputs a bit b=1, meaning valid, and b=0 meaning invalid.
We denote this as b=Vrfy , (m,o)

Correctness of a signature scheme

It is required that for every n, every (pk,sk) output by Gen,
and every message m €{0,1}, it holds that:
Vrfypk (m! Signsk (m)) = 1

Security

The signature experiment Sig-forge, ; (n):
1. Gen is run to obtain keys (pk,sk)
2. Adversary A is given pk and oracle access to
Signg (). The oracle returns a signature Sign (m)
for any message m of the adversaries choice.
The adversary after Q requests outputs a pair (m,o).
3. The output of the experiment is denoted to be 1 if
and only if, 1)Vrfy , (m,c) =1, and 2)m ¢ Q
A signature scheme IT = (Gen,Sign,Vrfy) is
existentially unforgeable under an adaptive chosen message
attack if for all PPT adversaries A, there exists a negligible
func negl st:
Pr[Sig-forge, (n)=1] < negl

RSA based Signatures

Define RSA-sign(n):

1. Gen(n): Outputs (N,e,d), where N=pq, where
p and g are both n bit primes, ed =1 mod ®(N).
2. Sign: On input a private key sk=(N,d), and a

message m e Z,,,

o=m“mod N
3. Vrfy: On input a public key pk=(N,e), and a
message m € Z,,, and a signature scheme o e Z,,,
output 1 if and only if:

m=c°®mod N

A no-message attack

* |tis trivial to forge without any query at all.
How?

A no-message attack

« It is trivial to forge without any query at all.

Just choose an arbitrary o, and compute
m= og®mod N.

It is immediately clear that (m, o) is always

valid!!

Forging a signature on an arbitrary
message
« Say the adversary wants to output a
forgery of any given message m.

» The adversary just needs two signatures
of chosen messages.

« How does the forgery work?

The forgery

« Adversary chooses an arbitrary m1 and
obtains its sign o1.

* It computes, m2=m/m1, and its sign o02.
* Now note, any valid sign for m, is
o=md=(m1.m2)¢
=m19.m2¢
= (01. 02)mod N.

Question

« How many forgeries can you create with t
such signature values?

Hashed RSA

» The basic idea is to modify the textbook
RSA by applying some hash function H to
the message before signing.

* The scheme considers a publicly known
function:
H:{0,1}> Z
* The sign o is computed from m, as
follows:

o=[H(m)]“mod N

The function H should be collision
resistant

* The function H must be collision resistant,
as otherwise one can find two messages,
m#m1, st H(m)=H(m1).

— then creating a forgery is trivial.

Attacks on the hashed RSA
scheme

* No message attack: Is difficult, if H is difficult to
invert.

» Forging a signature on arbitrary messages:

For the previous attack for textbook RSA to work now,
we need to find three messages, m, m1 and m2 st:
H(m)=H(m1).H(m2) mod N.

This seems to be difficult if H is not efficiently invertible.

Proofs of these schemes exploit that the function H is
a randomly looking function: This proof models are
called Random Oracle models.

The Hash and Sign Paradigm

« Apart from preventing the attacks on the
RSA-sign scheme, there is another
advantage:

— it can be used for signing messages of
arbitrary lengths.

— general approach is to hash and then sign the
message.
» Of course the following theorem does not
apply for RSA-sign, as it is not secure
itself.

Hash and Sign

IT = (Geng, Sign,Vrfy), IIy = (Geny, H). A signature scheme 11"

m Gen': on input 1™ run Geng(1™) to obtain (pk, sk), and run
Geny (1™) to obrain s. The public key is pk' = (pk, s) and the
private key is sk' = (sk, s).

m Sign’: on input sk' and m € {0,1}*, o « Sign 4 (H*(m)).

m Vrly': on input p¥, m € {0,1}* and &, output 1 —

Vrly i (H*(m), o) = 1.

If 11 is existentially unforgeable under an adaptive CMA and Iy is
collision resistant, then Construction is existentially unforgeable
under an adaptive CMA.

Hash and Sign

Idea: a forgery must involve either finding a collision in H or
forging a signature with respect to I1.

Proof.

A’ attacks II' and output (m, o), m & Q.
SF: Sigforge 4 11v(n) = 1.

coll: 3m’ € Q, H*(m') = H*(m).

P1[SF] = Pr[SF A coll] + Pr[SF A coll] < Pr[coll] + Pr[SF A coll].

Reduce C for Iy to A'. Prcoll] = Pr[Hashcollg 1, (n) = 1].
Reduce A for IT to \A’. Pr[SF A coll] = Pr[Sigforge 4 ;;(n) = 1].
So both Pr|coll] and Pr[SF A coll] are negligible. O

Reduction 1

Reduce C for Iy to A'. A" queries the signature «; of i-th
message m;, i =1,..., Q).

—_———— C p,{:’l = {,TJA. ,‘:‘:? 1

T

-+

oi + Sign g (H*(my)) LA

(m, my) if 34 (m, o)

-

-.I;':”I:m] = H*(m;) —

Pr[coll] = Pr[Hashcollg 1, (n) = 1].

Reduction 2

Reduce A for IT 1o A"

pk .
—_—] ‘/L"l pkf = {j_?li-. .‘i} 1
;= H*(m;) mi;
a; ON 11 0; A?
(H*(m),o) (m,o)

P]‘[SF .-'ﬁ'-. m: = P[[Sigforgév,“](n] = 1]

10

Lamport’s One Time Signatures

The one-time signature (OTS) experiment Sigforgefg_t["[“‘q(n]:

H (pk, sk) + Gen(17™).

H A is given input 1™ and a single query m' to Sign_;(-), and
outputs (m, o), m # m'.

H Sigforgel{i™(n) =1 — Vry i (m, o) = L.

A signature scheme 11 is existentially unforgeable under an
adaptive CMA if ¥ ppT A, 3 negl such that:

Pr[Sigforge’; 17 (n) = 1] < negl(n).

Construction of Lamport’'s OTS

f is a one-way function (OWF).
m Gen: on inpur 1", fori € {1,... ¢}
H choose random ;5. 751 + {0,1}™.
H compute y; o := f(Tin) and yi1 = f(mi1)-

_ [¥%o 0 - HED o — Ho 2o - TEo
ia Y21 0 Hea T11 T2 ot T

m Sign: on input sk and m € {0,1}¢ with m = my - - - my,

output o = (T mys - - - 5 -It‘:mej-
m Vrfy: on input pk, m € {0,1}* with m = m; - - - mg and
o= (z,...,), output 1 = f(x:) = vi m,, for all i.

11

Example

Signing m = 011

(-I'I.[] o0 T30
sk =

— o= (T10, T2 1, T21)
Ty @ -'4‘.!,.1) (71,0, T2,1, T2,1)

o = (zy, T, ;3):

7
o we flom) =mpo
R (¥ w0 wmo)| . 7
P (.Ul,l Y21 Y3 ﬂ"xﬂj 9 #a,1
flaz) = 1

Security Proof

If f is a OWF, then Construction 11 is a OTS for messages of

length polynomial £.

Idea: If m # m', then 3i*, my. = b* £ mi,. So 1o forge a
signature on m can invert a single y;- 3+ at least.

Proof.
Reduce T inverting y to A attacking IL:
B Construct pk: Choose i* «+ {1,...,f} and »* « {0,1}, set
Yo pe =y For i 4%, g g o= flam).
H A signs m' with pk: It m] = b*, stop. Otherwise, return o’.
B When A outputs (m, o), o = (z,...,x), if A output a
forgery at (i*,b%): Vrfy 1 (m,o) =1 and my- = b* # ml.,
then output z;s pe.

Pr[T succeeds| = %P[[\A succeeds]

12

Stateful Signature Scheme

A stateful signature scheme:
m Key-generation algorithm (pk, sk, s5) + Gen(17). s is
initial state.
m Signing algorithm (o, s;) « Sign_, ., (m).
m Verification algorithm b := Vrly ((m, o).

A Simple Scheme

A simple stateful signature scheme for OTS:

Generate (pk;, sk;) independently, set pk := (pki, ..., pke) and

sk = '[.‘Cﬁ'[...... 5 h'l

Start from the state 1, sign the s-th message with sk,, verify with
pk., and update the state to s + 1.

Woeakness: the upper bound ¢ must be fixed in advance.

13

Chain-based Signatures

| m1 | pke ‘ ‘ ma p};‘;| - mi | pkg
4 't

5k1+l’-TJ skg*ﬂ’fi skg - skg,-'-"-ﬁ skiyq

Use a single public key pki, sign each m; and pk;y with sk;:
o; + Sign, (mg] pkiy),

output {(pk;,,,o;), and verify o; with pk;.
The signature is (pk; ., 7, {Tﬂjn}?kj_haj}?;}}-
Woeakness: stateful, not efficient, revealing all previous messages.

Tree based Signature Schemes

g

1
pimu skon :m’an stm (pLJ 0, ! s‘km pim sk l]
JUJ-XJD-: Ifk(:ul 133-4:1 0 iDb: 11 Phuu .‘I‘Jl"’\thJL P-M 10 I-?F-’l 11
SIE':DUD glilﬂ(]] ?h]](] “h:l] 1 gLT oo ?h o1 ‘ilila] 10 Sk] 11

A AN AN EL AN AN A

m the root is label by = (empty string), each node is labeled by a
string w, the left-child w0 and the right-child w1.

m the leaf is a message m, and the internal nodes are
(pky. sky), where w is the prefix of m.

m each node pk, “certifies” its child node(s) pkya||pke or w.

The signature scheme

« |t first generates keys (as needed) for all nodes
on the path from root to the leaf labeled m.

— some of these public keys may have been generated
during signing previous messages, they are not
generated again.

— it certifies the path from the root to the leaf labeled as
m by computing a signature on pk,,||pk,, using
secret key sk, for each string w that is a proper prefix
of m.

— finally, it certifies m by computing a signature on m
with the private key sk,.

The tree based signature algorithm

I1 = (Gen, Sign, Vrfy). For a binary string m, m); def iy - - Ty
denote the i-bit prefix of m. II" = (Gen*, Sign*, Vrfy*):
m Gen™: on input 1", compute (pk, sk:) +— Gen(1™) and output
the public key pk-. The private key and initial sate are sk-.
m Sign®: on input m € {0,1}",
H fori=0to n— 1: compute (pky),0, $km|n) < Gen(17),

(Phme1s Skmj1) ¢ Gen(1™), o, Sig“skm":P'E‘m|,[:u||17'i~'m|,1)-
if these values are not in the state, and add them to the state.
Bl compute ., + Sign,, (m), if it is not in the state, add it.

B output @ = ':{Urn 't pk‘fﬁl[ﬂ: p'i‘:ﬁih] }11'1;::!' 1 U!TI.:I'
m Vrfy*: on input pk., m,o, output 1 —

B Vv, (m,on) <1

15

Security

IT is a OTS. Construction IT* is a secure digital signature scheme.

Idea: Reduce A for OTS IT to .A* for “tree-based” T1*.

A* queries £* = £*(n) times, £ = {(n) = 2nf* + 1.

A is given input pk, generates a list of £ key pairs with i*-th node
pk inserted randomly. .A runs .4* as a subroutine, and replies the
queries from 4* with the list of keys. If A* outputs a forgery on
m, then there is one node 1, for which the signature of its child '
is forged, on the path from the root to m. If i = i* (with
probability %]. then A outputs a forgery on C.

Pr[Sigforge’; 1™ (n) = 1] = Pr[Sigforge 4+ (1) = 1]/£(n)

Stateless scheme

» The states depend on the message
signed.

* It is possible to generate all needed keys
in the entire tree in advance, but the time
complexity is exponential.

16

A Stateless Solution

Idea: use deterministic randomness to emulate the state of tree.

Use a PRF F and two keys k. k' (secrets). Generating pk,,, sk, in
2 steps:

compute 1y, 1= Fp(w).
H compute (pk,, sk,) := Gen(1™; r,), using r,, as random coins.
k' is used to generate v, that is used to compute .

Digital Signature Algorithm

A prrr G is on input 1™, outputs (p, q, g) except with negligible
probability: (1) p and q are primes with ||q|| = n; (2) q|(p — 1) but
g> ¢ (p—1); (3) g is a generator of the subgroup of L7, of order q.

m Gen: on input 1", run (p, q.g) + G. A hash function
H:{0.1}* - Z,. Choose = + L, and set y := [g* mod p].
pk=(H,p,q,9.v). sk=(H,p,q.9,7).

m Sign: on input sk and m € {0,1}*, choose k +— Z and set
r = [[¢* mod p] mod q|, s := [(H(m) + zr) - k- mod g].
Output a signature (r, s).

m Vrfy: on input pk, m € {0,1}*, (r,s), r € Ly, s€ L,
up := [H(m) - s~ mod q], uz:=[r-s ! mod q]. Quiput
] e r= [[g" 4™ mod p] mod g].

17

Correctness

r = [[¢" mod p] mod ¢] and s = [(F+or)-k~" mod g], # = H(m).

A —1
ms a8

g Y

1 F}L-I:I?L-I-JT]_IIF{J.T-{f‘-\’!-l-ﬂ':'_

=4 q
— .q{r}s+:.r]-{rh+£rzl_lk (

'k {mod p)
mod p)

= g* (mod p).

[[_r;l'r" mod p| mod g] = r.

m DSS uses the Digital Signature Algorithm (DSA).

m Security of DSS relies on the hardness of discrete log problem.

Insecurity

There is no proof of security for DSS based on discrete log
assumption.

Certificates

e e

Alice Bob

Certificates certo_.p def Sign_?k(_,{:'Bob's key is pkg').

18

Public Key Infrastructure (ISA)

m A single CA: is trusted by everybody and issues certificates.
m Strength: simple
m Weakness: single-point-of-failure

m Multiple CAs: are trusted by everybody and issue

certificates.

m Strength: robust
m Weakness: cannikin law

m Delegation and certificate chains: The trust is transitive.
m Strength: ease the burden on the root CA.
B Weakness: difficult for management, cannikin law.

m “Web of trust”: No central points of trust, e.g. PGP.

m Strength: robust, work at “grass-roots” level.
m Weakness: difficult to manage/give a guarantee on trust.

Invalidating

m Expiration: include an expiry date in the certificate.
daf . ” ' . ' \
certo,p = Sign, ('bob’s key is pkp', date).
m Revocartion: explicitly revoke the certificate.
def ' T
certo_,g = Sign,(‘bob's key is pkp’, ##4#).

“HHHET represents the serial number of this certificate.
When CA want to revoke certificates, CA generates a
certificate revocation list (CRL) containing the serial numbers
of all revoked certificates, signs the CRL along with the
current data, and distributes it widely.

19

