Practice Problems-3: Foundations of Cryptography (Course No: CS60088)

Attempt All Questions

1. Let G be a length preserving pseudorandom generator. Prove that:

 $G'(x_1||\dots||x_n) = (G(x_1)||G(x_2)||\dots||G(x_n)),$

where $|x_1| = |x_2| = \ldots = |x_n| = n$, is a pseudorandom generator.

- 2. Let $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ be computationally indistinguishable probability distributions.
 - (a) Prove that for any probabilistic polynomial time algorithm \mathcal{A} it holds that $\{\mathcal{A}(X_n)\}_{n\in\mathbb{N}}$ and $\{\mathcal{A}(Y_n)\}_{n\in\mathbb{N}}$ are computationally indistinguishable.
 - (b) Consider a pseudorandom function G which has a expansion factor l(n) = n + 1. Answer the following questions in this regard:
 - i. Consider the distributions U_n and U_{n+1} , which indicates the uniform distributions from $\{0,1\}^n$ and $\{0,1\}^{n+1}$. Indicate whether $G(U_n)$ and U_{n+1} are computationally indistinguishable. State reasons for your answer.
 - ii. Consider an adversary \mathcal{B} which does not run in polynomial time. Frame an efficient distinguisher \mathcal{B} for the distributions $G(U_n)$ and U_{n+1} .

Thus, justify that the claim of part (a) may not be true if \mathcal{A} does not run in polynomial time.

3. Let G be a pseudorandom generator with expansion factor l(n) = n + 1. Prove that G is a one-way function.

[Hint: Note that the domain of the generator is $\{0,1\}^n$, while the range is $\{0,1\}^{n+1}$]