Solving Recurrences

Debdeep Mukhopadhyay IIT Kharagpur

Recurrence Relations

- A recurrence relation (R.R., or just recurrence) for a sequence {a_n} is an equation that expresses a_n in terms of one or more previous elements
 - $a_0, ..., a_{n-1}$ of the sequence, for all $n \ge n_0$.

 l.e., just a recursive definition, without the base cases.
- A particular sequence (described nonrecursively) is said to solve the given recurrence relation if it is consistent with the definition of the recurrence.
 - A given recurrence relation may have many solutions.

Example

Consider the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} \ (n \ge 2).$$

· Which of the following are solutions?

$$a_n = 3n$$

$$a_n = 2^n$$

$$a_n = 5$$

Further Examples

 Recurrence relation for growth of a bank account with P% interest per given period:

$$M_n = M_{n-1} + (P/100)M_{n-1}$$

 Growth of a population in which each pair of rabbit yield 1 new one every year after 2 years of their birth.

$$P_n = P_{n-1} + P_{n-2}$$
 (Rabbits and Fibonacci relation)

Solving Compound Interest RR

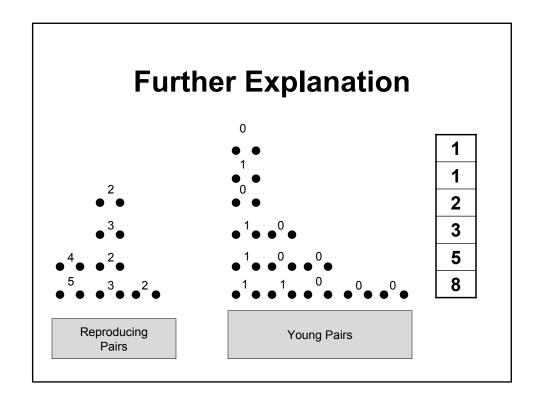
•
$$M_n = M_{n-1} + (P/100)M_{n-1}$$

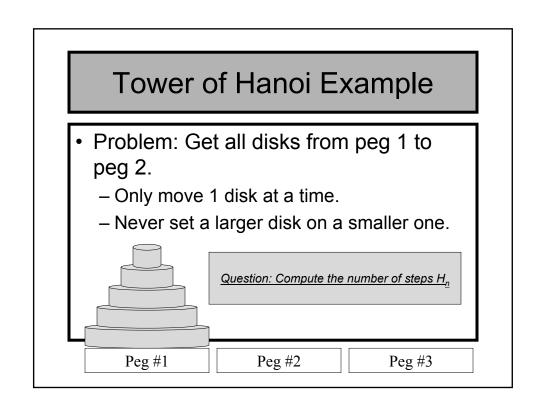
= $(1 + P/100) M_{n-1}$
= $r M_{n-1}$ (let $r = 1 + P/100$)
= $r (r M_{n-2})$
= $r \cdot r \cdot (r M_{n-3})$...and so on to...
= $r^n M_0$

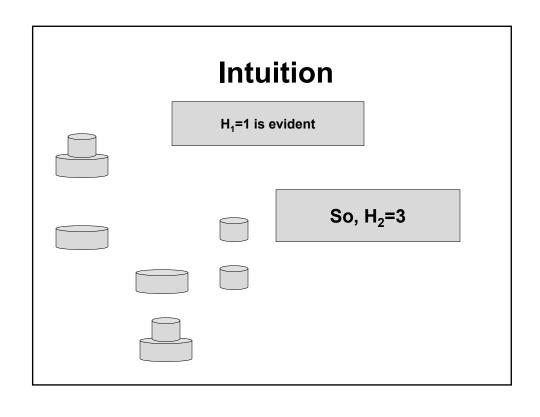
Rabbits on an Island (assuming rabbits are immortal)

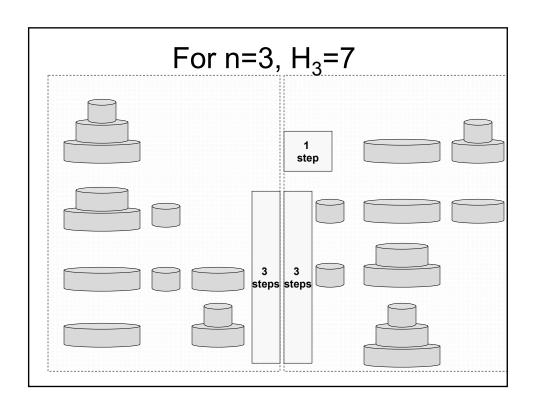
Year	Reproducing pairs	Young pairs	Total pairs
1	0	1	1
2	0	1	1
3	1	1	2
4	1	2	3
5	2	3	5
6	3	5	8

$$\underline{Pn = Pn-1 + Pn-2}$$









Hanoi Recurrence Relation

- Let H_n = # moves for a stack of n disks.
- · Optimal strategy:
 - − Move top n−1 disks to spare peg. (H_{n-1} moves)
 - Move bottom disk. (1 move)
 - Move top n–1 to bottom disk. (H_{n-1} moves)
- Note: $H_n = 2H_{n-1} + 1$

Solving Tower of Hanoi RR

$$\begin{split} H_n &= 2 \ H_{n-1} + 1 \\ &= 2 \ (2 \ H_{n-2} + 1) + 1 \\ &= 2^2 (2 \ H_{n-3} + 1) + 2 + 1 = 2^3 \ H_{n-3} + 2^2 + 2 + 1 \\ \dots \\ &= 2^{n-1} \ H_1 + 2^{n-2} + \dots + 2 + 1 \\ &= 2^{n-1} + 2^{n-2} + \dots + 2 + 1 \\ &= \sum_{i=0}^{n-1} 2^i \\ &= 2^n - 1 \end{split} \tag{since } H_1 = 1)$$

Another R.R. Example

- Find a R.R. & initial conditions for the number of bit strings of length n without two consecutive 0s. Assume n ≥ 3.
- We can solve this by breaking down the strings to be counted into cases that end in 0 and in 1.
 - For each ending in 0, the previous bit must be 1, and before that comes any qualifying string of length n−2.
 - For each string ending in 1, it starts with a qualifying string of length n−1.
- Thus, $a_n = a_{n-1} + a_{n-2}$. (Fibonacci recurrence.)

Yet another R.R. example...

- Give a recurrence (and base cases) for the number of n-digit decimal strings containing an even number of 0 digits.
- Can break down into the following cases:
 - Any valid string of length n–1 digits, with any digit 1-9 appended.
 - Any invalid string of length n-1 digits, + a 0.
- $a_n = 9a_{n-1} + (10^{n-1} a_{n-1})$ = $8a_{n-1} + 10^{n-1}$.
 - Base cases: $a_0 = 1 (\epsilon)$, $a_1 = 9 (1-9)$.

Catalan Numbers

- parenthesize the product of n+1 numbers, x_0 , x_1 , ..., x_n to specify the order of multiplication. Call it C_n . Find a R.R for the number of ways we can
- Define C₀=C₁=1 (its important to have proper base cases)
- If n=2, $(x_0 \cdot x_1) \cdot x_2 \cdot x_0 \cdot (x_1 \cdot x_2) = > C_2 = 2$
 - Note that $C_2=C_1C_0+C_0C_1=1+1=2$
- If n=3, (($x_0.x_1$). x_2). x_3 ; ($x_0.x_1$).($x_2.x_3$); ($x_0.(x_1.x_2)$). x_3 ; $x_0.((x_1.x_2).x_3)$; $x_0.(x_1.x_2)$. x_3); => C_3 =5
 - Note that $C_3=C_2C_0+C_1C_1+C_0C_2=2+1+2=5$

Catalan Numbers

- The final "." operator is outside the scope of any parenthesis.
- The final . can be between any x_k and x_{k+1} out of the n+1 numbers.
- How many ways can we have parenthesis as follows:

$$- [x_0, x_1, \dots, x_k] . [x_{k+1}, x_{k+2}, \dots, x_n]$$

$$C_{k}$$

$$C_{-1, 4}$$

- The "." can occur in after any x_k, where k ranges from 0 to n-1
- So, the total number of possible parenthesis is:

$$\sum_{i=0}^{n-1} C_k C_{n-k-1}$$

 $\sum_{k=0}^{n-1} C_k C_{n-k-1}$ Exact form of G_n can be computed using Generating functions

Solving Recurrences

 A <u>linear homogeneous recurrence of degree k</u> with <u>constant coefficients</u> ("k-LiHoReCoCo") is a recurrence of the form

$$a_n = c_1 a_{n-1} + ... + c_k a_{n-k}$$
,
where the c_i are all real, and $c_k \neq 0$.

• The solution is uniquely determined if k initial conditions $a_0 \dots a_{k-1}$ are provided. This follows from the second principle of Mathematical Induction.

Examples

- f_n=f_{n-1}+f_{n-2} is a k-LiHoReCoCo
- h_n=2h_{n-1}+ 1 is not Homogenous
- $a_n = a_{n-1} + a_{n-2}^2$ is not linear
- b_n=nb_{n-1} does not have a constant co-efficient

Solving LiHoReCoCos

- The basic idea: Look for solutions of the form a_n = rⁿ, where r is a constant not zero (r=0 is trivial)
- This requires the *characteristic equation*:

$$r^n = c_1 r^{n-1} + \dots + c_k r^{n-k}$$
, i.e., (rearrange $r^k - c_1 r^{k-1} - \dots - c_k = 0$

• The solutions (*characteristic roots*) can yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

Consider an arbitrary 2-LiHoReCoCo:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

• It has the characteristic equation (C.E.):

$$r^2 - c_1 r - c_2 = 0$$

• Theorem 1: If the CE has 2 roots $r_1 \neq r_2$, then $\{a_n\}$ is a solution to the RR iff $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ for constants α_1 , α_2 .

Example

- Solve the recurrence $a_n = a_{n-1} + 2a_{n-2}$ given the initial conditions $a_0 = 2$, $a_1 = 7$.
- Solution: Use theorem 1:
 - $-c_1 = 1, c_2 = 2$
 - Characteristic equation:

$$r^2 - r - 2 = 0$$

- Solutions: $r = [-(-1)\pm((-1)^2 4\cdot1\cdot(-2))^{1/2}]/2\cdot1$ = $(1\pm9^{1/2})/2$ = $(1\pm3)/2$, so r=2 or r=-1.
- So $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$.

(Using the quadratic formula here.)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example Continued...

To find α_1 and α_2 , solve the equations for the initial conditions a_0 and a_1 : $a_0 = 2 = \alpha_1 2^0 + \alpha_2 (-1)^0$

$$a_0^0 = 2 = \alpha_1 2^0 + \alpha_2 (-1)^0$$

$$a_1 = 7 = \alpha_1 2^1 + \alpha_2 (-1)^1$$

Simplifying, we have the pair of equations: $2 = \alpha_1 + \alpha_2$

$$2 = \alpha_1 + \alpha_2$$

$$7 = 2\alpha_1 - \alpha_2$$

which we can solve easily by substitution:

$$\alpha_2 = 2 - \alpha_1$$
; $7 = 2\alpha_1 - (2 - \alpha_1) = 3\alpha_1 - 2$;

$$9 = 3\alpha_1$$
; $\alpha_1 = 3$; $\alpha_2 = 1$.

• Final answer: $a_n = 3 \cdot 2^n - (-1)^n$

Check: $\{a_{n\geq 0}\}=2, 7, 11, 25, 47, 97...$

Proof of Theorem 1

- Proof that $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ is always a solution:
 - We know $r_1^2 = c_1 r_1 + c_2$ and $r_2^2 = c_1 r_2 + c_2$.
 - Now we can show the proposed sequence satisfies the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2}$:

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}(\alpha_{1}r_{1}^{n-1} + \alpha_{2}r_{2}^{n-1}) + c_{2}(\alpha_{1}r_{1}^{n-2} + \alpha_{2}r_{2}^{n-2})$$

$$= \alpha_{1}r_{1}^{n-2}(c_{1}r_{1} + c_{2}) + \alpha_{2}r_{2}^{n-2}(c_{1}r_{2} + c_{2})$$

$$= \alpha_{1}r_{1}^{n-2}r_{1}^{2} + \alpha_{2}r_{2}^{n-2}r_{2}^{2} = \alpha_{1}r_{1}^{n} + \alpha_{2}r_{2}^{n} = a_{n}. \quad \Box$$

This shows that if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, then $\{a_n\}$ is a solution to the R.R.

The remaining part of the proof

- If $\{a_n\}$ is a solution of R.R. then, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, for n=0,1,2,...
- Can complete proof by showing that for any initial conditions, we can find corresponding α 's
 - $a_0 = C_0 = \alpha_1 + \alpha_2$
 - $-a_1 = C_1 = \alpha_1 r_1 + \alpha_2 r_2$
 - $-\alpha_1 = (C_1 C_0 r_2)/(r_1 r_2); \alpha_2 = (C_0 r_1 C_1)/(r_1 r_2)$
 - But it turns out this is a solution only if $r_1 \neq r_2$. So the roots have to be distinct.
 - The recurrence relation and the initial conditions determine the sequence <u>uniquely</u>. It follows that

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ (as we have already shown that this is a soln.)

The Case of Degenerate Roots

- Now, what if the C.E. $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 ?
- Theorem 2: Then, $a_n = (\alpha_1 + \alpha_2 n) r_0^n$, for all $n \ge 0$, for constants α_1 , α_2 .

Example

- Solve: $a_n = 6a_{n-1} 9a_{n-2}$ with $a_0 = 1, a_2 = 6$
- CE is r^2 -6r+9=0 => r_0 =3
- So, the general form of the soln is:
 - $-a_n=(\alpha_1+\alpha_2n)3^n$
 - Solve the rest using the initial conditions

k-LiHoReCoCos

- Consider a *k*-LiHoReCoCo: $a_n = \sum_{i=1}^k c_i a_{n-i}$
- It's C.E. is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0$$

• Thm.3: If this has k distinct roots r_i , then the solutions to the recurrence are of the form:

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i are constants.

Example

· Solve:

 $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$, with initial conditions $a_0=2$, $a_1=5$ and $a_2=15$.

CE is $r^3-6r^2+11r-6=0 => (r-1)(r-2)(r-3)=0$

Thus the soln is:

$$a_n = (\alpha_1 1^n + \alpha_2 2^n + \alpha_3 3^n)$$

Solve the rest.

Degenerate k-LiHoReCoCos

• Suppose there are t roots $r_1,...,r_t$ with multiplicities $m_1,...,m_t$. Then:

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i - 1} \alpha_{i,j} n^j \right) r_i^n$$

for all $n \ge 0$, where all the α are constants.

Example

- Solve: $a_n = -3a_{n-1} 3a_{n-2} a_{n-3}$, $a_0 = 1$, $a_1 = -1$
- CE is : $r^2+3r+3r+1=(r+1)^3=0 => r=-1$ with multiplicity 3.
- So, soln is:
 - $-a_n = (\alpha_1 + \alpha_2 r + \alpha_3 r^2)(-1)^n$
 - Complete the rest.

LiNoReCoCos

 Linear <u>nonhomogeneous</u> RRs with constant coefficients may (unlike Li<u>Ho</u>ReCoCos) contain some terms F(n) that depend *only* on n (and not on any a;'s). General form:

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + F(n)$$

The associated homogeneous recurrence relation (associated LiHoReCoCo). **F(n) is not identically zero.**

Solutions of LiNoReCoCos

- A useful theorem about LiNoReCoCos:
 - If $a_n = p(n)$ is any particular solution to the LiNoReCoCo

 $a_n = \left(\sum_{i=1}^k c_i a_{n-i}\right) + F(n)$

– Then all its solutions are of the form:

$$a_n = p(n) + h(n),$$

where $a_n = h(n)$ is any solution to the associated homogeneous RR $a_n = \left(\sum_{i=1}^k c_i a_{n-i}\right)$

LiNoReCoCo Example

- Find all solutions to $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?
 - Notice this is a 1-LiNoReCoCo. Its associated 1-LiHoReCoCo is $a_n = 3a_{n-1}$, whose solutions are all of the form $a_n = \alpha 3^n$. Thus the solutions to the original problem are all of the form

 $a_n = p(n) + \alpha 3^n$. So, all we need to do is find one p(n) that works.

Trial Solutions

- If the extra terms F(n) are a degree-t polynomial in n, you should try a degree-t polynomial as the particular solution p(n).
- This case: F(n) is linear so try $a_n = cn + d$. cn+d = 3(c(n-1)+d) + 2n (for all n) (2c+2)n + (2d-3c) = 0 (collect terms) So c = -1 and d = -3/2. So $a_n = -n - 3/2$ is a solution.
- Check: $a_{n\geq 1} = \{-5/2, -7/2, -9/2, \dots\}$

Finding a Desired Solution

 From the previous, we know that all general solutions to our example are of the form:

$$a_n = -n - 3/2 + \alpha 3^n$$
.

Solve this for α for the given case, $a_1 = 3$:

$$3 = -1 - 3/2 + \alpha 3^{1}$$

$$\alpha = 11/6$$

• The answer is $a_n = -n - 3/2 + (11/6)3^n$.

Double Check Your Answer!

• Check the base case, a_1 =3:

$$a_n = -n - 3/2 + (11/6)3^n$$

 $a_1 = -1 - 3/2 + (11/6)3^1$
 $= -2/2 - 3/2 + 11/2 = -5/2 + 11/2 = 6/2 = 3$

• Check the recurrence, $a_n = 3a_{n-1} + 2n$:

$$-n - 3/2 + (11/6)3^n = 3[-(n-1) - 3/2 + (11/6)3^{n-1}] + 2n$$

$$= 3[-n - 1/2 + (11/6)3^{n-1}] + 2n$$

$$= -3n - 3/2 + (11/6)3^n + 2n = -n - 3/2 + (11/6)3^n \blacksquare$$

Theorem

• Suppose that {a_n} satisfies the LiNoReCoCo,

 $a_n = c_1 a_{n-1} + ... + c_k a_{n-k} + F(n)$, where c_1 , c_2 , ..., c_n are real numbers and $F(n)=(b_t n^t + b_{t-1} n^{t-1} + ... + b_0)s^n$, where b's and s are real numbers.

- When s is not a root of the CE, there is a Particular solution of the form: (p_tn^t+p_{t-1}n^{t-1}+...+p₀)sⁿ.
- When s is a root of this CE and its multiplicity is m, there is a particular solution of the form: n^m(p_tn^t+p_{t-1}n^{t-1}+...+p₀)sⁿ

State the Particular Solutions

- RR: $a_n = 6a_{n-1} 9a_{n-2} + F(n)$
- CE has a single root 3, with multiplicity 2.
- F(n)=3ⁿ Particular Solution: p₀n²3ⁿ
- F(n)=n3ⁿ Particular Solution:

$$n^2 (p_1 n + p_0) 3^n$$

• F(n)=n²2ⁿ Particular Solution:

$$(p_2n^2+p_1n+p_0)2^n$$

• F(n)=(n²+1)3ⁿ Particular Solution:

$$n^2(p_2n^2+p_1n+p_0)3^n$$

Be Careful when s=1

- Example: $a_n = a_{n-1} + n$, $a_1 = 1$
- CE: r=1, with multiplicity 1
- F(n)=n, Particular Solution is n(p₁n+p₀)
- Solve for p₁ and p₀ using the recurrence equation
- Write the solution: c (solution to the associated homogenous RR) + Particular Solution
- Solve for c using a₁=1 and obtain a_n=n(n+1)/2