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Recurrence Relations

» A recurrence relation (R.R., or just recurrence)
for a sequence {a,} is an equation that
expresses a, in terms of one or more previous
elements
a,, --., a,_4 of the sequence, for all n>n,.

— le., just a recursive definition, without the base cases.

» A particular sequence (described non-
recursively) is said to solve the given recurrence
relation if it is consistent with the definition of the
recurrence.

— A given recurrence relation may have many solutions.




Example

* Consider the recurrence relation
a, = 26n—1 —dp o (I’IZZ)
» Which of the following are solutions?

a,=3n
a,=2"
a,=>5

Further Examples

« Recurrence relation for growth of a bank
account with P% interest per given period:

M, =M, _,+ (PM00)M,_,
« Growth of a population in which each pair

of rabbit yield 1 new one every year after 2
years of their birth.

P, =P, _,+ P, _, (Rabbitsand
Fibonacci relation)




Solving Compound Interest RR

« M, =M, , + (PI100)M,,
= (1 + P[100) M, |,

=rM_, (letr=1+ P/100)
=r(rM,.)

=rr(rM,;) ...andsoonto...
=r" M,

Rabbits on an Island
(assuming rabbits are immortal)

Year Reproducing Young Total
pairs pairs pairs
1 0 1 1
2 0 1 1
3 1 1 2
4 1 2 3
5 2 3 5
6 3 5 8

Pn =Pn-1+Pn-2
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Tower of Hanoi Example

* Problem: Get all disks from peg 1 to
peg 2.
— Only move 1 disk at a time.
— Never set a larger disk on a smaller one.

Question: Compute the number of steps Hﬂ

Peg #1 Peg #2 Peg #3




Intuition

H,=1 is evident

So, H,=3

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————




Hanoi Recurrence Relation

* Let H, = # moves for a stack of n disks.
» Optimal strategy:
— Move top n—1 disks to spare peg. (H,_4
moves)
— Move bottom disk. (1 move)
— Move top n—1 to bottom disk. (H,_, moves)

* Note: H,=2H, _,+1

Solving Tower of Hanoi RR

H,=2H,,+1
=2(2H,,+1)+1 =22H, ,+2+1
=222H,;+1)+2+1=22H, _,+22+2+ 1

=2 H, +2r2+ L+ 2+ 1
=21+ 224+ +2+1 (since H; = 1)

i=0

= 20— 1




Another R.R. Example

* Find a R.R. & initial conditions for the number of
bit strings of length n without two consecutive
O0s. Assume n = 3.

* We can solve this by breaking down the strings
to be counted into cases that end in 0 and in 1.

— For each ending in 0, the previous bit must be 1, and
before that comes any qualifying string of length n—2.

— For each string ending in 1, it starts with a qualifying
string of length n—1.

* Thus, a,=a,_,+ a,_,. (Fibonacci recurrence.)

Yet another R.R. example...

» Give a recurrence (and base cases) for
the number of n-digit decimal strings
containing an even number of 0 digits.

« Can break down into the following
cases:

— Any valid string of length n—1 digits, with
any digit 1-9 appended.
— Any invalid string of length n—1 digits, + a 0.

*a,= gan—1 + (10n—1 o an—1)

=8a, ,+ 10"
—Base cases: a, =1 (¢), a; = 9 (1-9).




Catalan Numbers

* Find a R.R for the number of ways we can
parenthesize the product of n+1 numbers, x,, X;,
...,X, to specify the order of multiplication. Call it

n-
Define CE=C1=1 (its important to have proper base cases)
If N=2, (Xg.X4)-X0,Xq-(X4.X5)=>C,=2

— Note that C,=C,C,+C,C,;=1+1=2

1fn=3, ((Xg-X)-X2)-X3; (Xo-X1)-(X2-X3); (Xo-(X4-X2))-X3 5 Xo.((X4-X2)-X3) ;
Xo-(X4.(X2:X3))
=> C3:5

— Note that C,=C,Cy+ C,C,+C,C,=2+1+2=5

Catalan Numbers

« The final “.” operator is outside the scope of any
parenthesis.

« The final . can be between any x, and x,,, out of the n+1
numbers.

+ How many ways can we have parenthesis as follows:

_ [xo,&'...,xk] I Xt XQZ’ e Xp]

Ck cn-k-1

— The “.” can occur in after any x,, where k ranges from 0 to n-1
— So, the total number of possible parenthesis is:

n—1
C C Exact form of C,
k™~ n—k—1 can be computed using
i=0 Generating functions




Solving Recurrences

» A linear homogeneous recurrence of degree k
with constant coefficients (“k-LiHoReCoCo”) is a
recurrence of the form

a,=¢ca8, 4% ...+ Cca, s
where the c; are all real, and ¢, # 0.

» The solution is uniquely determined if k initial
conditions a,...a,_4 are provided. This follows
from the second principle of Mathematical
Induction.

Examples

« f=f 4+, is a k-LiHOReCoCo
* h,=2h_,+ 1 is not Homogenous
« a,=a, (+ a2 is not linear

* b,=nb__, does not have a constant
co-efficient




Solving LiHoReCoCos

The basic idea: Look for solutions of the

form a, = r", where r is a constant not zero

(r=0 is trivial)

This requires the characteristic c(aquation:

- —1 -k rearrange

Lo e S

The solutions (characteristic roots) can

yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

Consider an arbitrary 2-LiHoReCoCo:
ap = C48p4q + Coap
It has the characteristic equation (C.E.):
rP—cir—c,=0
» Theorem 1: If the CE has 2 roots
r#r,, then {a} is a solution to the RR
iff a, = oyry" + a,r,” for >0
for constants a4, a,.
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Example

+ Solve the recurrence a, = a,_4 + 2a,,_, given the
initial conditions a, =2, a, = 7.
+ Solution: Use theorem 1:

-c=1,¢,=2
— Characteristic equation:
r-r-2=0
— Solutions: r=[~(—1)x((-1)2 — 4:1-(-2))"3] | 2-1 Tr—
= (1£9"72)/2 = (1£3)/2,50 r=2 or r=-1. | quadmaiic
— So an = o, 2n + ay (_1 )n_ formula here.)
ax* +bx+c=0<
o —b++b* —4ac
2a

Example Continued...

+ Tofind o, and a,, solve the equations for the initial
conditions a, and a;:
Simplifying, we have the pair of equations:
=oqt o
7 = 2a1 - OC2
which we can solve easily by substitution:
0!2 = 2—(11, 7 = 20(1 - (2—0C1) = 30(1 - 2,
9=30y; a4 =3; a,=1.
+ Final answer: a,=32"— (1)

Check: {a,.o} =2,7,11,25,47,97 ...
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Proof of Theorem 1

* Proof that a,, = a4r,"+a,r," is always a
solution:
—We know r2 = ¢,r; + ¢, and r,2 = ¢4, *+ C,.
— Now we can show the proposed sequence
satisfies the recurrence a, = ca,_4 + C,a,_:
C18p1 F Colp o = Cqlayly™ 1 Hayr) 1) + Cylaqry™ 2+o,r,"2)

= a4 "2(C4ry+Cy) F+ aghy3(C4rp+Cy)
= oyl "2r2 + 0ol 22 = oyl "+ aul," = a,. O

This shows that if a, = ar,"+a,r,", then {a} is

a solution to the R.R.

The remaining part of the proof

+ If{a,}is a solution of R.R. then, a,, = a,r,"+a,r,", for
n=0,1,2,...
« Can complete proof by showing that for any initial
conditions, we can find corresponding «’s
— ay=Cy= ay+a,
— 4=Cy= ayrytogh
— ay=(Ci-Cor)/(r1-r2); a;=(Cor-Co)/(r-12)
— But it turns out this is a solution only if r,#r,. So the
roots have to be distinct.

— The recurrence relation and the initial conditions
determine the sequence uniquely. It follows that

a, = a4r"+a,r," (as we have already shown that this is a soln.)
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The Case of Degenerate Roots

* Now, what if the C.E.
r> — ¢, — ¢, = 0 has only 1 root r,?
« Theorem 2: Then,
a, = (a4 + a,n)ry", forall n>0,
for constants a4, a,.

Example

« Solve: a,=6a, -9a,_, with a,=1,a,=6

« CE is r2-6r+9=0 =>r,=3

» So, the general form of the soln is:
—a,=(a, + a,n)3"
— Solve the rest using the initial conditions

13



k-LiHoOReCoCos

» Consider a k-LiHoReCoCo: 4, = ZCian_i
* Is C.E. is: i=1

k

k k—i

rt — E cr ' =0
i=l1

« Thm.3: If this has k distinct roots r;, then the
solutions to the recurrence are of the form:

k
_ n
an - Zalrl

=1
for all >0, where the a; are constants.

Example

» Solve:
a,=6a, -11a,,*+6a, 5, with initial
conditions a,=2, a,=5 and a,=15.
CE is r3-6r>+11r-6=0 => (r-1)(r-2)(r-3)=0
Thus the soln is:
a,=(a,1"+ a,2"+ a,3")
Solve the rest.
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Degenerate k-LiHoReCoCos

» Suppose there are t roots ry,...,r; with
multiplicities m,,...,m,. Then:
t [ m-l1
_ J |1
a,=) | 2 an
i=1 \_ j=0

for all =0, where all the a are constants.

Example

« Solve: a,=-3a,,-3a,,-a,3, 8,=1, a,=-
1,a,=-1

« CEis : r>+3r+3r+1=(r+1)3=0 => r=-1 with
multiplicity 3.

* SO, solnis:
—ap=(ay+ apr+ agr?)(-1)"
— Complete the rest.
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LiNoReCoCos

 Linear nonhomogeneous RRs with
constant coefficients may (unlike
LiHoReCoCos) contain some terms F(n)
that depend only on n (and not on any
a;/s). General form:

an\= c.a,4t...*tca, - + F(n)

N
The associated homogeneous recurrence relation
(associated LiHoReCoCo). F(n) is not identically zero.

Solutions of LiNoReCoCos

» A useful theorem about LiINoReCoCos:
— If a,, = p(n) is any particular solution to the

LiNoReCoCo i
an = (Zcz’anij + F(n)
i=1

— Then all its solutions are of the form:
a, = p(n) + h(n),
where a, = h(n) is any solution to the
associated homogeneous RR :(ic.a j

i=1
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LiNoReCoCo Example

 Find all solutions to a, = 3a,_,+2n. Which
solution has a, = 37
— Notice this is a 1-LiNoReCoCo. Its associated
1-LiHoReCoCo is a, = 3a,,_4, whose solutions
are all of the form a,, = a3". Thus the
solutions to the original problem are all of the

form
a, = p(n) + a3". So, all we need to do is find

one p(n) that works.

Trial Solutions

* If the extra terms F(n) are a degree-t polynomial
in n, you should try a degree-t polynomial as the
particular solution p(n).

» This case: F(n) is linear so try a, = cn + d.

cn+d = 3(c(n—1)+d) + 2n (for all n)
(2c+2)n + (2d-3c) =0 (collect terms)
Soc=-1and d=-3/2.

So a,=—n—3/2 is a solution.

- Check: a,., ={-5/2, ~7/2,-9/2, ... }
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Finding a Desired Solution

* From the previous, we know that all
general solutions to our example are of the

form:
a,=-n-—3/2+a3".
Solve this for a for the given case, a, = 3:
3=-1-3/2+ a3’
a=11/6
« The answeris a,=—-n—3/2 + (11/6)3".

Double Check Your Answer!

* Check the base case, a,=3:
a,=-n—3/2+(11/6)3"
a; =—1-3/2+(11/6)3
=-2/2—-3/2+11/2=-5/2+11/2=6/2=3

» Check the recurrence, a, = 3a,_{+2n:
—n - 3/2 + (11/6)3" = 3[~(n—1) — 3/2 + (11/6)3"]+2n
=3[-n— 1/2 + (11/6)371] + 2n
=-3n—3/2 + (11/6)3" + 2n = —n — 3/2 + (11/6)3" m
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Theorem

» Suppose that {a,} satisfies the LiNoReCoCo,
a,=cqa, 4+ ...+tca,,+F(n), wherec,,
C,, ..., C, are real numbers and F(n)=(b,n+b, nt
+...+by)s", where b’s and s are real numbers.

* When s is not a root of the CE, there is a
Particular solution of the form: (p,nt+p,.,n*
T+, +pg)sn.

* When s is a root of this CE and its multiplicity is
m, there is a particular solution of the form:
N™(pnt+pgntT+...+pg)s”

State the Particular Solutions

* RR: a,=6a,_4-9a,,*+F(n)
« CE has a single root 3, with multiplicity 2.
* F(n)=3" Particular Solution: p,n23"
* F(n)=n3" Particular Solution:
N2 (pyn+pg)3"
« F(n)=n22" Particular Solution:
(pon2+p,n+py)2"
* F(n)=(n2+1)3" Particular Solution:
N?(p,n?+p n+pg)3"




Be Careful when s=1

Example: a,=a,_+n, a,=1
CE: r=1, with multiplicity 1
F(n)=n, Particular Solution is n(p,n+p,)

Solve for p, and p, using the recurrence
equation

Write the solution: ¢ (solution to the associated
homogenous RR) + Particular Solution

Solve for ¢ using a,=1 and obtain a,=n(n+1)/2
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