IIT KGP Dept. of Computer Science & Engineering

CS 30053 Foundations of Computing

Debdeep Mukhopadhyay

Mathematical Reasoning

Foundations of Logic

Mathematical Logic is a tool for working with elaborate compound statements. It includes:

- · A language for expressing them.
- · A concise notation for writing them.
- A methodology for objectively reasoning about their truth or falsity.
- It is the foundation for expressing formal proofs in all branches of mathematics.

Foundations of Logic: Overview

- 1. Propositional logic
- 2. Predicate logic and Quantifiers
- 3. Quantifiers and Logical Operators
- 4. Logical Inference
- 5. Methods of Proof

Topic #1 – Propositional Logic

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using so-called Boolean connectives.

Some applications in computer science:

- · Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases & search engines. George Boole

(1815-1864)

Topic #1 – Propositional Logic

Definition of a *Proposition*

Assertion: Statement

Proposition: A *proposition* is an assertion which is

either true or false, but not both.

(However, you might not *know* the actual truth value, and it might be situation-dependent.)

[Later in probability theory we assign degrees of certainty to propositions. But for now: think True/False only!]

Topic #1 – Propositional Logic

Examples of Propositions

- "It is raining." (In a given situation.)
- "Beijing is the capital of China."
- "1 + 2 = 3"

But, the following are **NOT** propositions:

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)

A Paradox

- "I am lying": Is he speaking the truth or lying?
 True or False??
 - Neither True nor False.
 - If the statement is true, then he says he is lying, that is if he says the truth he is lying
 - If the statement is false, then his statement, "I am lying" is false, which means he is telling the truth
 - Thus, although it appears that the statement is a proposition, this is not. As this cannot be assigned a truth value.

Operators / Connectives

An *operator* or *connective* combines one or more *operand* expressions into a larger expression. (*E.g.*, "+" in numeric exprs.)

Unary operators take 1 operand (e.g., -3); binary operators take 2 operands (eg 3 \times 4).

Propositional or Boolean operators operate on propositions or truth values instead of on numbers.

Some Popular Boolean Operators

Formal Name	<u>Nickname</u>	Arity	Symbol
Negation operator	NOT	Unary	7
Conjunction operator	AND	Binary	^
Disjunction operator	OR	Binary	V
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\Rightarrow
Biconditional operator	IFF	Binary	\Leftrightarrow

The Negation Operator

The unary *negation operator* "¬" (*NOT*) transforms a prop. into its logical *negation*.

E.g. If p ="I have black hair." then $\neg p =$ "I do **not** have black hair."

Truth table for NOT:

$$T := True; F := False$$

":=" means "is defined as"

 $T := True; F := False$

":=" Market Properties of the properties

Topic #1.0 – Propositional Logic: Operators

The Conjunction Operator

The binary *conjunction operator* "\times" (*AND*) combines two propositions to form their logical *conjunction*.

E.g. If p="I will have salad for lunch." and q="I will have chicken for dinner.", then $p \land q$ ="I will have salad for lunch **and** I will have chicken for dinner."

Remember: "^" points up like an "A", and it means "AND"

Conjunction Truth Table

Note that a conjunction
 p₁ ∧ p₂ ∧ ... ∧ p_n of n propositions will have 2ⁿ rows in its truth table.

Op	eran	d columns	Ì
	p	q	$p \land q$
	F	F	F
	F	T	F
	T	F	F
	T	T	T

Also: ¬ and ∧ operations together are sufficient to express any Boolean truth table!

Topic #1.0 – Propositional Logic: Operators

The Disjunction Operator

The binary disjunction operator "\" (OR) combines two propositions to form their logical disjunction.

p="My car has a bad engine."

q="My car has a bad carburetor."

 $p \lor q$ ="Either my car has a bad engine, or my car has a bad carburetor."

Meaning is like "and/or" in English.

After the downwardpointing "axe" of "\" splits the wood, you can take 1 piece OR the other, or both.

Disjunction Truth Table

- Note that pvq means that p is true, or q is true, or both are true!
- $\begin{array}{c|cccc} F & q & p \lor q \\ \hline F & F & F \\ F & T & \mathbf{T} & \text{Note} \\ T & F & \mathbf{T} & \text{from AND} \\ T & T & T \end{array}$
- So, this operation is also called *inclusive or*, because it **includes** the possibility that both p and q are true.
- "¬" and "∨" together are also universal.

Nested Propositional Logic: Operators Expressions

- Use parentheses to group subexpressions:
 - "I just saw my old friend, and either he's grown or I've shrunk." = $f \land (g \lor s)$
 - ($f \land g$) ∨ s would mean something different
 - $f \wedge g \vee s$ would be ambiguous
- By convention, "¬" takes *precedence* over both "∧" and "∨".
 - $\neg s \wedge f \text{ means } (\neg s) \wedge f \text{, not } \neg (s \wedge f)$

A Simple Exercise

Let *p*="It rained last night", *q*="The sprinklers came on last night," *r*="The lawn was wet this morning."

Translate each of the following into English:

 $\neg \rho$ = "It didn't rain last night."

 $r \wedge \neg p$ = "The lawn was wet this morning, and it didn't rain last night."

 $\neg r \lor p \lor q =$

"Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

Topic #1.0 – Propositional Logic: Operators

The Exclusive Or Operator

The binary *exclusive-or operator* "⊕" (*XOR*) combines two propositions to form their logical "exclusive or" (exjunction?).

p = "I will earn an A in this course,"

q = "I will drop this course,"

 $p \oplus q$ = "I will either earn an A for this course, or I will drop it (but not both!)"

Exclusive-Or Truth Table

- Note that p⊕q means that p is true, or q is true, but not both!
- This operation is called *exclusive or*, because it **excludes** the possibility that both p and q are true.

• "¬" and "⊕" together are **not** universal.

Topic #1.0 – Propositional Logic: Operators

Natural Language is Ambiguous

Note that English "or" can be ambiguous regarding the "both" case! $p \mid q \mid p$ "or" $q \mid p$

"Pat is a singer or F F F Pat is a writer." - \vee F T T "Pat is a man or T F T T Pat is a woman." - \oplus T T ?

Need context to disambiguate the meaning!

For this class, assume "or" means inclusive.

The Implication Operator

The implication $p \Rightarrow q$ states that p implies q.

l.e., If *p* is true, then *q* is true; but if *p* is not true, then *q* could be either true or false.

E.g., let p = "You study hard."

q = "You will get a good grade."

 $p \Rightarrow q$ = "If you study hard, then you will get a good grade." (else, it could go either way)

Topic #1.0 – Propositional Logic: Operators

Implication Truth Table

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- $p \rightarrow q$ does **not** say that p causes q!
- $p \rightarrow q$ does **not** require that p or q are ever true!
- $p \quad q \quad p \rightarrow q$
- $egin{array}{c|cccc} F & F & I \\ F & T & T & The \\ T & F & F \end{array}$

case!

• *E.g.* "(1=0) → pigs can fly" is TRUE!

For simplicity, I shall denote the implication operator by the symbol \Rightarrow and the iff operator by \leftrightarrow

Examples of Implications

- "If this lecture ends, then the sun will rise tomorrow." *(rue)* or *False*?
- "If Tuesday is a day of the week, then I am a bird." True or Face?
- "If 1+1=6, then Bush is president."
 rue or False?
- "If the moon is made of green cheese, then I am richer than Bill Gates." (rue) or False?

Why does this seem wrong?

- Consider a sentence like,
 - "If I wear a red shirt tomorrow, then Arnold Schwarzenegger will become governor of California."
- In logic, we consider the sentence True so long as either I don't wear a red shirt, or Arnold wins.
- But in normal English conversation, if I were to make this claim, you would think I was lying.
 - Why this discrepancy between logic & language?

Resolving the Discrepancy

- In English, a sentence "if p then q" usually really implicitly means something like,
 - "In all possible situations, if p then q."
 - That is, "For p to be true and q false is impossible."
 - Or, "I guarantee that no matter what, if p, then q."
- This can be expressed in predicate logic as:
 - "For all situations s, if p is true in situation s, then q is also true in situation s"
 - Formally, we could write: $\forall s, P(s) \rightarrow Q(s)$
- That sentence is logically False in our example, because for me to wear a red shirt and for Arnold to lose is a possible (even if not actual) situation.
 - Natural language and logic then agree with each other.

Topic #1.0 – Propositional Logic: Operators

English Phrases Meaning $p \rightarrow q$

- "p implies q"
- "if p, then q"
- "if p, q"
- "when p, q"
- "whenever p, q"
- "q if p"
- "q when p"
- "q whenever p"

- "p only if q"
- "p is sufficient for a"
- "q is necessary for p"
- "q follows from p"
- "q is implied by p"

If p is true, that is enough, **q has to be true** for the implication to hold (sufficiency)

If q is false, p cannot be true; It is necessary that q be true for p to be true (necessicity)

Converse, Inverse, Contrapositive

Some terminology, for an implication $p \rightarrow q$:

- Its converse is: $q \rightarrow p$.
- Its inverse is: $\neg p \rightarrow \neg q$.
- Its contrapositive: $\neg q \rightarrow \neg p$.
- One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which

Topic #1.0 – Propositional Logic: Operators

How do we know for sure?

Proving the equivalence of $p \rightarrow q$ and its contrapositive using truth tables:

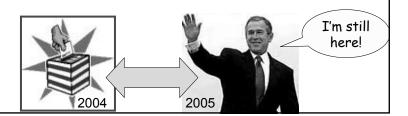
The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.

p = "Bush wins the 2004 election."

q = "Bush will be president for all of 2005."

 $p \leftrightarrow q$ = "If, and only if, Bush wins the 2004 election, Bush will be president for all of 2005."



Topic #1.0 – Propositional Logic: Operators

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and q p q $p \leftrightarrow q$ have the **same** truth value. F F T
- p ↔ q does **not** imply that p and q are true, or cause each other.

Boolean Operations Summary

 We have seen 1 unary operator (out of the 4 possible) and 5 binary operators (out of the 16 possible). Their truth tables are below.

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	T	F	F	F	T	T
F	T	T	F	T	T	T	F
T	F	F	F	T	T	F	F
T	T	F	T	T	F	T	T

Topic #1.0 – Propositional Logic: Operators

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	_	^	>	\oplus	\rightarrow	\leftrightarrow
Boolean algebra:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	&&		! =		==
C/C++/Java (bitwise):	~	&		^		
Logic gates:	→		\Diamond	>>		

Topic #2 – Bits

Bits and Bit Operations

John Tukey (1915-2000)

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
- By convention:

 0 represents "false"; 1 represents
 "true".
- Boolean algebra is like ordinary algebra except that variables stand for bits, + means "or", and multiplication means "and".

Topic #2 – Bits

Bit Strings

- A Bit string of length n is an ordered series or sequence of n≥0 bits.
 - More on sequences in §3.2.
- By convention, bit strings are written left to right: *e.g.* the first bit of "1001101010" is 1.
- When a bit string represents a base-2 number, by convention the first bit is the most significant bit. Ex. 1101₂=8+4+1=13.

Topic #2 – Bits

Counting in Binary

- Did you know that you can count to 1,023 just using two hands?
 - How? Count in binary!
 - Each finger (up/down) represents 1 bit.
- To increment: Flip the rightmost (low-order) bit.
 - If it changes 1→0, then also flip the next bit to the left.
 - If that bit changes 1→0, then flip the next one, etc.
- 000000000, 000000001, 000000010,, 1111111101, 1111111110, 111111111

Topic #2 – Bits

Bitwise Operations

- Boolean operations can be extended to operate on bit strings as well as single bits.
- E.g.:

01 1011 0110

11 0001 1101

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR

Summary

You have learned about:

- Propositions: What they are.
- Propositional logic operators'
 - Symbolic notations.
 - English equivalents.
 - Logical meaning.
 - Truth tables.

- · Nested propositions.
- Alternative notations.
- Bits and bit-strings.
- Next section:
 - Propositional equivalences.
 - How to prove them.

Topic #1.1 – Propositional Logic: Equivalences

Propositional Equivalence

Two *syntactically* (*i.e.*, textually) different compound propositions may be the *semantically* identical (*i.e.*, have the same meaning). We call them *equivalent*. Learn:

- Various equivalence rules or laws.
- How to *prove* equivalences using *symbolic derivations*.

Tautologies and Contradictions

A *tautology* is a compound proposition that is **true** *no matter what* the truth values of its atomic propositions are!

Ex. $p \lor \neg p$ [What is its truth table?]

A *contradiction* is a compound proposition that is **false** no matter what! $Ex. p \land \neg p$ [Truth table?]

Other compound props. are *contingencies* (which is neither a tautology nor a contradiction)

Topic #1.1 – Propositional Logic: Equivalences

Logical Equivalence

Compound proposition p is *logically* equivalent to compound proposition q, written $p \Leftrightarrow q$, **IFF** the compound proposition $p \leftrightarrow q$ is a tautology.

Compound propositions *p* and *q* are logically equivalent to each other **IFF** *p* and *q* contain the same truth values as each other in all rows of their truth tables.

Proving Equivalence Via Truth Tables

Ex. Prove that $p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$.

p q	$p \vee q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
FF	F	T	T	T	F
FT	T	T	F	F	T
TF	T	F	T	F	T
TT	Τ/	F	F	F	T/
	V		•		

Constructing Truth table

Construct a truth table for $q \land \neg p \rightarrow p$.

p q	$\neg p$	¬ p ∧ q	$q \land \neg p \rightarrow p$
FF	T	F	T
FT	T	T	F
TF	F	F	T
TT	F	F	T

Equivalence Laws

- These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.
- They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it.

Topic #1.1 – Propositional Logic: Equivalences

Equivalence Laws - Examples

- Identity: $p \land T \Leftrightarrow p \quad p \lor F \Leftrightarrow p$
- Domination: $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$
- Idempotent: $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$
- Double negation: $\neg\neg p \Leftrightarrow p$
- Commutative: $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$
- Associative: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

More Equivalence Laws

- Distributive: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- De Morgan's:

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

• Trivial tautology/contradiction:

$$p \lor \neg p \Leftrightarrow \mathsf{T}$$
 $p \land \neg p \Leftrightarrow \mathsf{F}$

Augustus De Morgan (1806-1871)

Defining Operators via Equivalences Equivalences

Using equivalences, we can *define* operators in terms of other operators.

• Exclusive or: $p \oplus q \Leftrightarrow (p \lor q) \land \neg (p \land q)$

$$p \oplus q \Leftrightarrow (p \land \neg q) \lor (q \land \neg p)$$

- Implies: $p \rightarrow q \Leftrightarrow \neg p \lor q$
- Biconditional: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \Leftrightarrow \neg (p \oplus q)$

An Example Problem

 Check using a symbolic derivation whether $(p \land \neg q) \rightarrow (p \oplus r) \Leftrightarrow \neg p \lor q \lor \neg r.$

$$(p \land \neg q) \xrightarrow{} (p \oplus r) \Leftrightarrow$$

[Expand definition of \rightarrow] $\neg (p \land \neg q) \lor (p \oplus r)$

[Defn. of
$$\oplus$$
] $\Leftrightarrow \neg(p \land \neg q) \lor ((p \lor r) \land \neg(p \land r))$
[DeMorgan's Law]

$$\Leftrightarrow (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$$
cont.

Topic #1.1 – Propositional Logic: Equivalences

Example Continued...

$$(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \Leftrightarrow [\lor commutes] \\ \Leftrightarrow \underline{(q \lor \neg p)} \lor ((p \lor r) \land \neg (p \land r)) [\lor associative] \\ \Leftrightarrow q \lor (\underline{\neg p} \lor ((p \lor r) \land \neg (p \land r))) [distrib. \lor over \land] \\ \Leftrightarrow q \lor (((\underline{\neg p} \lor (p \lor r)) \land (\underline{\neg p} \lor \neg (p \land r))) \\ [assoc.] \Leftrightarrow q \lor (((\underline{\neg p} \lor p) \lor r) \land (\neg p \lor \neg (p \land r))) \\ [trivail taut.] \Leftrightarrow q \lor ((\underline{\mathbf{T}} \lor r) \land (\neg p \lor \neg (p \land r))) \\ [domination] \Leftrightarrow q \lor (\underline{\mathbf{T}} \land (\neg p \lor \neg (p \land r))) \\ [identity] \Leftrightarrow q \lor (\neg p \lor \neg (p \land r)) \Leftrightarrow cont.$$

End of Long Example

$$q \vee (\neg p \vee \neg (p \wedge r))$$

[DeMorgan's] $\Leftrightarrow q \vee (\neg p \vee (\neg p \vee \neg r))$

[Assoc.] $\Leftrightarrow q \vee ((\neg p \vee \neg p) \vee \neg r)$

[Idempotent] $\Leftrightarrow q \lor (\neg p \lor \neg r)$

[Assoc.] $\Leftrightarrow (q \vee \neg p) \vee \neg r$

[Commut.] $\Leftrightarrow \neg p \lor q \lor \neg r$

Q.E.D. (quod erat demonstrandum)

(Which was to be shown.)

Topic #1 – Propositional Logic

Review: Propositional Logic

- Atomic propositions: *p*, *q*, *r*, ...
- Boolean operators: ¬ ∧ ∨ ⊕ → ↔
- Compound propositions: $s := (p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \neg (p \rightarrow q)$
- · Proving equivalences using:
 - Truth tables.
 - Symbolic derivations. $p \Leftrightarrow q \Leftrightarrow r \dots$

Predicate Logic Topic #3 - Predicate Logic

- · Language of propositions not sufficient to make all assertions needed in mathematics
 - -x=3, x+y=z
 - They are not propositions (Why?)
 - However if values are assigned they do
- · Consider the assertion:
 - He is tall and dark
 - These assertions are formed using variables, in a template. The template is called the predicate.

Contd...

- Assertion: x is tall and dark.
 - x is the variable
 - "is tall and dark" is the predicate

Applications of Predicate Logic

It is *the* formal notation for writing perfectly clear, concise, and unambiguous mathematical *definitions*, *axioms*, and *theorems* for *any* branch of mathematics.

Predicate logic with function symbols, the "=" operator, and a few proof-building rules is sufficient for defining *any* conceivable mathematical system, and for proving anything that can be proved within that system!

Topic #3

Other Applications

Kurt Gödel 1906-1978

- Predicate logic is the foundation of the field of mathematical logic, which culminated in Gödel's incompleteness theorem, which revealed the ultimate limits of mathematical thought:
 - Given any finitely describable, consistent proof procedure, there will still be some true statements that can never be proven by that procedure.
- *l.e.*, we can't discover *all* mathematical truths, unless we sometimes resort to making *guesses*.

Practical Applications

- Basis for clearly expressed formal specifications for any complex system.
- Basis for automatic theorem provers and many other Artificial Intelligence systems.

Topic #3 – Predicate Logic

Subjects and Predicates

- In the sentence "The dog is sleeping":
 - The phrase "the dog" denotes the subject the object or entity that the sentence is about.
 - The phrase "is sleeping" denotes the predicate- a property that is true of the subject.
- In predicate logic, a predicate is modeled as a function P(·) from objects to propositions.
 - -P(x) ="x is sleeping" (where x is any object).

More About Predicates

- Convention: Lowercase variables x, y, z...
 denote objects/entities; uppercase variables P,
 Q, R... denote propositional functions
 (predicates).
- Keep in mind that the result of applying a
 predicate P to an object x is the proposition P(x).
 But the predicate P itself (e.g. P="is sleeping")
 is not a proposition (not a complete sentence).
 - E.g. if P(x) = "x is a prime number", P(3) is the proposition "3 is a prime number."

Topic #3 – Predicate Logic

Propositional Functions

- Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take.
 - E.g. let P(x,y,z) = "x gave y the grade z", then if x="Mike", y="Mary", z="A", then P(x,y,z) = "Mike gave Mary the grade A."

Universes of Discourse (U.D.s)

- The power of distinguishing objects from predicates is that it lets you state things about many objects at once.
- E.g., let P(x)="x+1>x". We can then say,

"For any number x, P(x) is true" instead of

$$(0+1>0) \land (1+1>1) \land (2+1>2) \land ...$$

 The collection of values that a variable x can take is called x's universe of discourse.

Types of predicates

- Consider a predicate: P(c1,c2,...,cn)
- Defn:
 - Valid: Value of P is true for all choices of the argument
 - Satisfiable: Value of P is true for some value of the argument
 - Unsatisfiable: Value of P is never true for the possible choices of the argument

Quantifier Expressions

- Quantifiers provide a notation that allows us to quantify (count) how many objects in the univ. of disc. satisfy a given predicate.
- " \forall " is the FOR \forall LL or *universal* quantifier. $\forall x P(x)$ means *for all* x in the u.d., P holds.
- "∃" is the ∃XISTS or existential quantifier.
 ∃x P(x) means there exists an x in the u.d. (that is, 1 or more) such that P(x) is true.

Topic #3 – Predicate Logic

The Universal Quantifier ∀

Example:

Let the u.d. of x be <u>parking spaces at IITKGP</u>.

Let P(x) be the *predicate* "x is full." Then the *universal quantification of* P(x), $\forall x P(x)$, is the *proposition:*

- "All parking spaces at IITKGP are full."
- i.e., "Every parking space at IITKGP is full."
- i.e., "For each parking space at IITKGP, that space is full."

The Existential Quantifier ∃

• Example:

Let the u.d. of x be <u>parking spaces at</u> IITKGP.

Let P(x) be the *predicate* "x is full." Then the *existential quantification of* P(x), $\exists x P(x)$, is the *proposition*:

- "Some parking space at IITKGP is full."
- "There is a parking space at IITKGP that is full."
- "At least one parking space at IITKGP is full."

Question

What is a predicate with zero variables called?

Free and Bound Variables

- An expression like P(x) is said to have a free variable x (meaning, x is undefined).
- A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.
- Binding converts a predicate to a proposition

Topic #3 – Predicate Logic

Example of Binding

- P(x,y) has 2 free variables, x and y.
- ∀x P(x,y) has 1 free variable, and one bound variable. [Which is which?]
- "P(x), while x=3" is another way to bind x.
- An expression with <u>zero</u> free variables is a bonafide (actual) proposition
- An expression with <u>one or more</u> free variables is still only a predicate: ∀x P(x,y)

Nesting of Quantifiers

Example: Let the u.d. of x & y be people. Let L(x,y)="x likes y" (a predicate w. 2 f.v.'s) Then $\exists y \ L(x,y)$ = "There is someone whom x likes." (A predicate w. 1 free variable, x) Then $\forall x \ (\exists y \ L(x,y))$ = "Everyone has someone whom they like." (A with free variables.)

Review: Propositional Logic

- Atomic propositions: *p*, *q*, *r*, ...
- Boolean operators: ¬ ∧ ∨ ⊕ → ↔
- Compound propositions: $s = (p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \neg (p \rightarrow q)$
- Proving equivalences using:
 - Truth tables.
 - Symbolic derivations. $p \Leftrightarrow q \Leftrightarrow r \dots$

Review: Predicate Logic

- Objects *x*, *y*, *z*, ...
- Predicates P, Q, R, ... are functions mapping objects x to propositions P(x).
- Multi-argument predicates P(x, y).
- Quantifiers: $[\forall x P(x)] :=$ "For all x's, P(x)." $[\exists x P(x)] :=$ "There is an x such that P(x)."
- Universes of discourse, bound & free vars.

Quantifier Exercise

If R(x,y)="x relies upon y," express the following in unambiguous English: $\forall x(\exists y \ R(x,y)) = \\ \exists y(\forall x \ R(x,y)) = \\ \exists x(\forall y \ R(x,y)) = \\ \forall y(\exists x \ R(x,y)) = \\ \forall y(\exists x \ R(x,y)) = \\ \forall x(\forall y \ R(x,y)) = \\ \forall x(\forall y \ R(x,y)) = \\ \forall x(\forall y \ R(x,y)) = \\ \text{There's some needy person who relies upon everybody (including himself).}$ $\forall x(\forall y \ R(x,y)) = \\ \text{Everyone has someone who relies upon them.}$ Everyone relies upon everybody, (including themselves)!

Natural language is ambiguous!

- "Everybody likes somebody."
 - For everybody, there is somebody they like,

 ✓ x ∃y Likes(x,y) [Probably more likely.]
 - or, there is somebody (a popular person) whom everyone likes?
 - ∃*y* ∀*x Likes*(*x*,*y*)
- "Somebody likes everybody."
 - Same problem: Depends on context, emphasis.

Topic #3 – Predicate Logic

Game Theoretic Semantics

- Thinking in terms of a competitive game can help you tell whether a proposition with nested quantifiers is true.
- The game has two players, <u>both with the same</u> knowledge:
 - Verifier: Wants to demonstrate that the proposition is true.
 - Falsifier: Wants to demonstrate that the proposition is false.
- The Rules of the Game "Verify or Falsify":
 - Read the quantifiers from left to right, picking values of variables.
 - When you see "∀", the falsifier gets to select the value.
 - When you see "∃", the verifier gets to select the value.
- If the verifier <u>can always win</u>, then the proposition is true.
- If the falsifier can always win, then it is false.

Let's Play, "Verify or Falsify!"

Let B(x,y) := "x's month of birthday is the same as that of y"

Suppose I claim that among you:

Your turn, as falsifier: You pick any $x \rightarrow (so\text{-}and\text{-}so)$

 $\exists y \ B(\text{so-and-so}, y)$

My turn, as verifier: I pick any $y \rightarrow (such-and-such)$

B(so-and-so,such-and-such)

- Let's play it in class.
- Who wins this game?
- What if I switched the quantifiers, and I claimed that

 $\exists y \ \forall x \ B(x,y)$? Who wins in that case?

Topic #3 – Predicate Logic

Still More Conventions

- Sometimes the universe of discourse is restricted within the quantification, *e.g.*,
 - $\forall x$ >0 P(x) is shorthand for "For all x that are greater than zero, P(x)." = $\forall x (x$ >0 → P(x))
 - $-\exists x>0$ P(x) is shorthand for "There is an x greater than zero such that P(x)."

 $=\exists x (x>0 \land P(x))$

More to Know About Binding

- $\forall x \exists x P(x)$ x is not a free variable in $\exists x P(x)$, therefore the $\forall x$ binding isn't used
- (∀x P(x)) ∧ Q(x) The variable x is outside of the scope of the ∀x quantifier, and is therefore free. Not a complete proposition!
- $(\forall x P(x)) \land (\exists x Q(x))$ This is legal, because there are 2 different x's!

Commutavity of Quantifiers

- $\forall x \exists y P(x,y) \neq \exists y \forall x P(x,y)$
- $\forall x \forall y P(x,y) = \forall y \forall x P(x,y)$
- $\exists x \exists y P(x,y) = \exists y \exists x P(x,y)$

It is easy to disprove (give a counter-example)

Prove or disprove the above statements

Quantifier Equivalence Laws

- Definitions of quantifiers: If u.d.=a,b,c,... $\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land ...$ $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$
- From those, we can prove the laws: $\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$ **DeMorgan's** $\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$
- Which propositional equivalence laws can be used to prove this?

Topic #3 – Predicate Logic

More Equivalence Laws

- $\forall x \forall y P(x,y) \Leftrightarrow \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \Leftrightarrow \exists y \exists x P(x,y)$
- $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ $\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$
- Exercise:

See if you can prove these yourself.

- What propositional equivalences did you use?

Review: Predicate Logic

- Objects *x*, *y*, *z*, ...
- Predicates P, Q, R, ... are functions mapping objects x to propositions P(x).
- Multi-argument predicates *P*(*x*, *y*).
- Quantifiers: $(\forall x P(x))$ ="For all x's, P(x)." $(\exists x P(x))$ ="There is an x such that P(x)."

Topic #3 – Predicate Logic

Defining New Quantifiers

As per their name, quantifiers can be used to express that a predicate is true of any given *quantity* (number) of objects.

Define $\exists !x P(x)$ to mean "P(x) is true of exactly one x in the universe of discourse."

 $\exists ! x \ P(x) \Leftrightarrow \exists x \ (P(x) \land \neg \exists y \ (P(y) \land y \neq x))$ "There is an x such that P(x), where there is no y such that P(y) and y is other than x."

More about Quantifiers

- State True or False with reasons:
 - \forall distributes over Λ
 - ∀ distributes over ∨
 - ∃ distributes over Λ
 - ∃ distributes over ∨
 - $-\exists x[P(x) \land Q(x)] \rightarrow \exists xP(x) \land \exists xQ(x)$
 - $\, \forall x [P(x) \lor Q(x)] \to \forall x P(x) \lor \forall x Q(x)$

Prove or disprove:

$$\exists x[P(x) \rightarrow Q(x)] \Leftrightarrow [\exists xP(x) \rightarrow \exists xQ(x)]$$

$$\exists x[P(x) \rightarrow Q(x)] \Leftrightarrow \exists x[\neg P(x) \lor Q(x)]$$

$$\Leftrightarrow \exists x [\neg P(x)] \vee \exists x Q(x) \Leftrightarrow \neg \forall x P(x) \vee \exists x Q(x)$$

$$\Leftrightarrow \forall x P(x) \rightarrow \exists x Q(x)$$

Hence we are to check:

$$[\forall x P(x) \rightarrow \exists x Q(x)] \Leftrightarrow [\exists x P(x) \rightarrow \exists x Q(x)]$$

Truth Table

∀xP(x)	∃xP(x)	∃xQ(x)	$\forall x P(x) \rightarrow \\ \exists x Q(x)$	$\exists x P(x) \rightarrow \exists x Q(x)$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	n.a	n.a
1	0	1	n.a	n.a
1	1	0	0	0
1	1	1	1	1

Building Counter-example

- Build the counter-example, so that we satisfy the line of the truth-table which makes the difference:
 - Here, $\forall x P(x)=0$, $\exists x P(x)=1$, $\exists x Q(x)=0$
 - Example: P(x) is satisfiable and Q(x) is unsatisfiable
 - P(x): x=0, Q(x): x ≠ x.

Some Number Theory Examples

- Let u.d. = the natural numbers 0, 1, 2, ...
- "A number x is even, E(x), if and only if it is equal to 2 times some other number."
 ∀x (E(x) ↔ (∃y x=2y))
- "A number is *prime*, P(x), iff it's greater than 1 and it isn't the product of two non-unity numbers."

$$\forall x (P(x) \leftrightarrow (x \ge 1 \land \neg \exists yz \ x = yz \land y \ne 1 \land z \ne 1))$$

Topic #3 – Predicate Logic

Goldbach's Conjecture (unproven)

Using E(x) and P(x) from previous slide,

$$\forall E(x>2): \exists P(p), P(q): p+q = x$$

or, with more explicit notation:

$$\forall x [x>2 \land E(x)] \rightarrow$$

$$\exists p \; \exists q \; P(p) \land P(q) \land p+q = x.$$

"Every even number greater than 2 is the sum of two primes."

Deduction Example

Definitions:

s := Socrates (ancient Greek philosopher); H(x) := "x is human";M(x) := "x is mortal".

• Premises:

H(s) Socrates is human. $\forall x \ H(x) \rightarrow M(x)$ All humans are mortal.

Prove, Socrates is mortal!!

Topic #3 – Predicate Logic

Deduction Example Continued

Some valid conclusions you can draw:

 $H(s) \rightarrow M(s)$ [Instantiate universal.] If Socrates is human then he is mortal. $\neg H(s) \lor M(s)$ Socrates is inhuman or mortal. $H(s) \land (\neg H(s) \lor M(s))$ Socrates is human, and also either inhuman or mortal. $(H(s) \land \neg H(s)) \lor (H(s) \land M(s))$ [Apply distributive law.] $F \lor (H(s) \land M(s))$ [Trivial contradiction.] $H(s) \land M(s)$ [Use identity law.] M(s) Socrates is mortal.

Another Example

- Definitions: H(x) := "x is human";M(x) := "x is mortal"; G(x) := "x is a god"
- · Premises:
 - $\forall x H(x) \rightarrow M(x)$ ("Humans are mortal") and
 - $\forall x$ G(x) $\rightarrow \neg M(x)$ ("Gods are immortal").
- Show that $\neg \exists x (H(x) \land G(x))$ ("No human is a god.")

Topic #3 – Predicate Logic

Summary

- From these sections you should have learned:
 - Predicate logic notation & conventions
 - Conversions: predicate logic \leftrightarrow clear English
 - Meaning of quantifiers, equivalences
 - Simple reasoning with quantifiers
- · Upcoming topics:
 - Introduction to proof-writing.
 - Then: Set theory -
 - a language for talking about collections of objects.