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Order Analysis of Algorithms
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Sorting problem

• Input: A sequence of n numbers, 
a1,a2,…,an

• Output: A permutation (reordering) 
(a1’,a2’,…,an’) of the input sequence such 
that a1’≤a2’ ≤… ≤an’
– Comment: The number that we wish to sort 

are also known as keys
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Insertion Sort

• Efficient for sorting small numbers

• In place sort: Takes an array A[0..n-1] 
(sequence of n elements) and arranges 
them in place, so that it is sorted.

It is always good to start with numbers

5 4 32 6 1

5 4 32 6 12 54 5
j=0

611 54121 3 63 53 4
j=1j=2j=3j=4j=5

Invariant property in the loop:

At the start of each iteration of the algorithm, the subarray a[0...j-1] 
contains the elements originally in a[0..j-1] but in sorted order 
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Pseudo Code

• Insertion-sort(A)
1. for j=1 to (length(A)-1)
2. do key = A[j]
3. #Insert A[j] into the sorted sequnce A[0...j-1]
4. i=j-1
5. while i>0 and A[i]>key
6. do A[i+1]=A[i]
7. i=i-1

8. A[i+1]=key  //as A[i]<=key, so we place 
//key on the right side of A[i]

Loop Invariants and Correctness 
of Insertion Sort

• Initialization: Before the first loop starts, j=1. So, A[0] 
is an array of single element and so is trivially sorted.

• Maintenance: The outer for loop has its index moving 
like j=1,2,…,n-1 (if A has n elements). At the beginning 
of the for loop assume that the array is sorted from 
A[0..j-1]. The inner while loop of the jth iteration places 
A[j] at its correct position. Thus at the end of the jth
iteration, the array is sorted from A[0..j]. Thus, the 
invariance is maintained.  Then j becomes j+1. 
– Also, using the same inductive reasoning the elements are 

also the same as in the original array in the locations A[0..j].
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Loop Invariants and Correctness 
of Insertion Sort

• Termination: The for loop terminates 
when j=n, thus by the previous 
observations the array is sorted from 
A[0..n-1] and the elements are also the 
same as in the original array.

Thus, the algorithm indeed sorts and is thus
correct!

Analyzing Algorithms
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The RAM Model

• A generic one processor Random Access 
Machine (RAM) model of computation.

• Instructions are executed sequentially 
(and not concurrently)

• We have to use the model so that we do 
not go too deep (into the machine 
instructions) and yet not abuse the notions 
(by say assuming that there exists a 
sorting instruction)

The RAM Model

• Our model has instructions commonly 
found in real computers: 
– arithmetic (add, subtract, multiply, divide)

– data movement (load, store, copy)

– control (conditional and unconditional branch, 
subroutine call and function)

• Each such instruction takes a constant 
time
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Data types & Storage

• In the RAM model the data types are float and 
int.

• Assume the size of each block or word of data is 
so that an input of size n can be represented by 
word of clog(n) bits, c≥1

• c ≥1, so that each word can hold the value of n.

• c cannot grow arbitrarily, because we cannot 
have one word storing huge amount of data and 
also which could be operated in constant time.

Gray areas in the RAM model

• Is exponentiation a constant time operation? NO

• Is computation of 2n a constant time operation? 
Well…

• Many computers have a “shift left” operation by k 
positions (in constant time)

• Shift left by 1 position multiplies by 2. So, if I shift 
left 2, k times…I obtain 2k in constant time !
– (as long as k is no more than the word length).
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Some further points on the RAM 
Model

• We do not model the memory hierarchy
– No caches, pages etc

– May be necessary for real computers and real 
applications. But the discussions are too specialized 
and we do use such modeling when required. As they 
are very complex and difficult to work with.

– Fortunately, RAM models are excellent predictors! 
Still quite challenging. We require knowledge in logic, 
inductive reasoning, combinatorics, probability theory, 
algebra, and above all observation and intuition! 

Lets analyze the Insertion sort

• The time taken to sort depends on the fact 
that we are sorting how many numbers

• Also, the time to sort may change 
depending upon whether the array is 
almost sorted (can you see if the array 
was sorted we had very little job).

• So, we need to define the meaning of the 
input size and running time.
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Input Size

• Depends on the notion of the problem we are studying.

• Consider sorting of n numbers. The input size is the 
cardinal number of the set of the integers we are sorting.

• Consider multiplying two integers. The input size is the 
total number of bits required to represent the numbers.

• Sometimes, instead of one numbers we represent the 
input by two numbers. E.g. graph algorithms, where the 
input size is represented by both the number of edges 
(E) and the number of vertices (V)

Running Time

• Proportional to the Number of primitive 
operations or steps performed.

• Assume, in the pseudo-code a constant 
amount of time is required for each line.

• Assume that the ith line requires ci, where 
ci is a constant.

• Keep in mind the RAM model which says 
that there is no concurrency. 
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Run Time of Insertion Sort

1

2

3

for j=1 to n-1                                   c              n

      key=A[j]                                    c            n-1

      i=j-1                                           c            n-
n-1

4 j
j=1

n-1

5 j
j=1

6

1

      while i>0 and A[i]>key              c           t

      do   A[i+1]=A[i]                       c            (t 1)

              i=i-1                                   c         






n-1

j
j=1

7

  (t 1)

       A[i+1]=key                               c             (n-1)



n-1 n-1 n-1

1 2 3 4 j 5 j 6 j 7
j=1 j=1 j=1

T(n)=c ( 1) ( 1) t (t 1) (t 1) (n-1)n c n c n c c c c           

In the RAM model the total time required is the sum of that for each statement:

Steps Cost       Times

Best Case

• If the array is already sorted:

– While loop sees in 1 check that A[i]<key 
and so while loop terminates. Thus tj=1 
and we have: 

n-1 n-1 n-1

1 2 3 4 5 6 7
j=1 j=1 j=1

1 2 3 4 7 2 3 4 7

T(n)=c ( 1) ( 1) 1 (1 1) (1 1) (n-1)

       =(c ) ( )

n c n c n c c c c

c c c c n c c c c

         

       

  

The run time is thus a linear function of n
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Worst Case: The algorithm cannot 
run slower!

• If the array is arranged in reverse sorted array:
– While loop requires to perform the comparisons with 

A[j-1] to A[0], that is tj=j

The run time is thus a quadratic function of n

n-1 n-1 n-1

1 2 3 4 5 6 7
j=1 j=1 j=1

25 6 5 64 4
1 2 3 5 6 2 3 7

T(n)=c ( 1) ( 1) j (j 1) (j 1) (n-1)

3 3c
       =( ) ( ) ( )

2 2 2 2 2 2

n c n c n c c c c

c c c cc
n c c c n c c c c c

         

            

  

Average Case

• Instead of an input of a particular type (as in best 
case or worst case), all the inputs of the given 
size are equally probable in such an analysis.
– E.g. coming back to our insertion sort, if the elements 

in the array A[0..j-1] are randomly chosen. We can 
assume that half the elements are greater than A[j] 
while half are less. On the average, thus tj=j/2. 
Plugging this value into T(n) still leaves it quadratic. 
Thus, in this case average case is equivalent to a 
worst case run of the algorithm. 

– Does this always occur? NO. The average case may 
tilt towards the best case also. 


