
1

Growth of Functions

Debdeep Mukhopadhyay

IIT Kharagpur

Asymptotic Performance

• Exact running time of an algorithm is not always
required:
– When the input size of a problem is very large. Like,

in the insertion sort example if the number of
elements we had to sort are very large.

– Then the multiplicative constants and the lower order
terms can be neglected.

• How the running time of an algorithm
increases when the input increases
unbounded ?

2

Growth of Functions

• For functions over numbers, we often need to
know a rough measure of how fast a function
grows.

• If f(x) is faster growing than g(x), then f(x)
always eventually becomes larger than g(x) in
the limit (for large enough values of x).

• Useful in engineering for showing that one
design scales better or worse than another.

Growth of Functions
• Suppose you are designing a web site

to process user data (e.g., financial
records).

• Suppose database program A takes
fA(n)=30n+8 microseconds to process
any n records, while program B takes
fB(n)=n2+1 microseconds to process the
n records.

• Which program do you choose, knowing
you’ll want to support millions of users?

3

Visualizing Growth of Functions

• On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger...

fA(n)=30n+8

Increasing n 

fB(n)=n2+1
V

al
ue

 o
f

fu
nc

ti
on

 

Definition: O(g), at most order g
Let g be any function RR.

• Define “at most order g”, written O(g), to
be:

{f:RR | +ve c,k: x>k: 0  f(x)  cg(x) }

– “Beyond some point k, function f is at most a
constant c times g (i.e., proportional to g).”

– We are dealing with asymptotically
nonnegative elements of the set

• “f is at most order g”, or “f is O(g)”, or
“f=O(g)” all just mean that fO(g).

4

Points about the definition

• Note that f is O(g) so long as any values of c
and k exist that satisfy the definition.

• But: The particular c, k, values that make the
statement true are not unique: Any larger
value of c and/or k will also work.

• You are not required to find the smallest c and
k values that work. (Indeed, in some cases,
there may be no smallest values!)

However, you should prove that the values you choose do work.

“Big-O” Proof Examples

• Show that 30n+8 is O(n).
– Show c,k: n>k: 30n+8  cn.

• Let c=31, k=8. Assume n>k=8. Then
cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

• Show that n2+1 is O(n2).
– Show c,k: n>k: n2+1  cn2.

• Let c=2, k=1. Assume n>1. Then cn2 = 2n2 =
n2+n2 > n2+1, or n2+1< cn2.

5

• Note 30n+8 isn’t
less than n
anywhere (n>0).

• It isn’t even
less than 31n
everywhere.

• But it is less than
31n everywhere to
the right of n=8.

n>k=8 

Big-O example, graphically

Increasing n 

V
al

ue
 o

f
fu

nc
ti

on
 

n

30n+8
cn =
31n

30n+8
O(n)

Definition: (g), exactly order g

• If fO(g) and gO(f) then we say “g and f
are of the same order” or “f is (exactly or
tightly) order g” and write f(g).

• Another equivalent definition:
(g)  {f:RR |

+ve c1c2k x>k: 0  c1g(x)f(x)c2g(x)}

• “Everywhere beyond some point k, f(x)
lies in between two multiples of g(x).”

6

Definition: Ω(g), at least order g

Let g be any function RR.

• Define “at most order g”, written O(g), to
be:

{f:RR | +ve c,k: x>k: f(x) ≥ cg(x) ≥0 }
– “Beyond some point k, function f is at least a

constant c times g (i.e., proportional to g).”

• “f is at least order g”, or “f is Ω(g)”, or
“f=Ω(g)” all just mean that fΩ(g).

Graphical Representation

n>k

Increasing n 

n>k

Increasing n 

c2g(n)

c1g(n)

f(n) f(n)

cg(n)

f(n)=(g(n)) f(n)=Ω(g(n))

7

An Example of Tight Bound ()

• Prove f(n)= ½ n2-3n = (n2)

• In order to prove this we require
constants: c1 and c2 s.t. :
– c1n2≤ ½ n2-3n ≤ c2n2, for all n≥n0

– c1 ≤ ½ - 3/n ≤ c2, for all n≥n0

>1/141/140-1/10-1/4-1/2-1-5/2f(n)

87654321n

Set n0=7, c1=1/14, c2=1/2.
It is not important to have an unique value, what is
important that one set of values exist.

For this class

• We shall be using the O-notation in the
class frequently

• Point to be kept in mind: If running time is
O(n2)=> there is a function f(n) that is
O(n2) s.t. for any value of n≥n0, no matter
what particular input of size n is chosen,
the running time for that input is bounded
from above by the value f(n).

8

Next Day Recurrences

