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Probability Distribution

1. Probability Distribution: p =(p,,..., p,) is a tuple
of elements p, e R,, 0<p, <1, called probabilities,
such that Zn: p, =1

i=1
2. A probability space (X, py) is a finite set
X ={X,..., X, } equipped with a probability distribution
Px ={Py,--r P}
p, is called the probability of x,, 1<i<n. We also write
Py (%) = p, and consider p, as a map X — [0,1], called
the probability measure on X, associating with x € X its
probability.




3. An event ¢ in a probability space (X,p,) is a subset
g of X.

Px (&) = Z Py (¥)

yee

Py (X) =1

A probability space X is the model of a random experiment.
n independent repetitions of the random experiment are modeled
by the direct product: X" = X x X x...x X

Some interesting results...

Let ¢ be an event in a probability space X, with Pr[¢]=p>0. Repeatedly, we perform
the random experiment X independently. Let, G be the expected number of experiments

of X, until & occurs the first time. Prove that: E(G)= 1
P

PHG =t] = (1— p)"* p= E(G) = 3 tp(1— p)"* =—pj—p§(1— ) :-p;—p(%—l) =%.

t=1




Another Useful result

Let R, S and B be jointly distributed r.v with values in {0,1}.

Assume that B and S are independent and that B is uniformly distributed:
Pr(B=0)=Pr(B=1)=1/2

Prove that: Pr(R=S)=1/2 + Pr(R=B|S=B)-Pr(R=B)

Pr(S=B)=Pr(S=0)Pr(B=0|S=0)+Pr(S=1)Pr(B=1/S=1)
=Pr(S=0)Pr(B=0)+Pr(S=1)Pr(B=1)

1 1

==(Pr(S=0)+Pr(S=1))==

2( (S=0)+Pr(S=1)) >
Likewise, Pr(S = B) :%

Pr(R:S):%Pr(R: B|S= B)+%Pr(R:§|S:§)

:%[F’r(R =B|S= B)+17%Pr(R =B|S=B)]
PI(S = B)

- (R=B)=((R=B) N (S=B)) U((R=B) (S = B))

. Pr[R = B] = Pr[(R=B) N (S=B)] +Pr[(R =B) (S = B)]

Pr[R =B]-Pr[(R=B)n (S =B)]

I P
=+, [PR=B|S=B) ]

N Pr(R:S):%+%[Pr(R:B|S:B)7

Pr(S = B)
_1, loR=p|s=p)- PR=BI-PrS=BIP(R=B)|(S=B)]
z 2 1/2
:1+1[Pr(R:B|S:B)_Pr[R:B]—1/2Pr[(R:B)|(S=B)]
-z 1/2

=%+Pr(R=B|S=B)—PT[R=B]




Statistical Distance between
Probability Distributions

Let p and |5 be probability distributions on a finite set X.

The statistical distance between p and p is:

1

dist(p,p) == | p()-p(x)|
2

The statistical distance between probability distributions p
and p on a finite set X is the maximal distance between the
probabilities of events in X, ie.

dist(p,p) = max,_, | p(£) - p(e))

The events in X are the subsets of X. We divide the subsets into
three categories:

& ={xe X | p(x)> p(x)}
& ={xe X | p(x) < p()}
& ={xe X | p(x) = p(x)}

We have 0=p(X)-p(X) = Y [p() - P(e.)]

2 P(&5) — P&3) = 0= p(&y) - P(&;) = ~(P(e2) - P(&2))
Now because of the definition of &,

max,_p(&)-p(e)|= P(&) — Pler) =—(p(e,) - P(&,))
- dist(p,p) = %2 | () - P9

=§<2Xg1[p(x>—EJ(x)]—ergz[p(x)—ﬁ(x)])

=%[(D(€1) — P(e))— (p(£2) - P(&,))] = max, | p(&) - p())




Indistinguishable Distributions

p and p are called polynomially close or &-indistinguishable
if:
dist(p,p) < £(n) = ——
P(n)
where £(n) is a negligible quantity. p(n) is a polynomial in n.

Pseudo-random sequence: No efficient observer
can distinguish it from a uniformly chosen string
of the same length.

This approach leads to the concept of pseudo-
random generators, which is a fundamental
concept with lot of applications.

Proof

LetJ, ={n|n=rs,r,s are primes,|r|=|s|=k,r # s} and
X < Z, and x < Z_ are polynomially close. Is the result
dependent on the choice of r and s?




Pseudorandom Bit Generator

+ Let I1=(l,)en D€ @ key set with security parameter
n, and Fet?( be a probabilistic sampling algorithm
for |1, which on input (n) outputs an IE€I . Let | be
a polynomial function in the security parameter.

* A pseudorandom bit generator with key
generator K and stretch function | is a family of
functions G=(G;),¢, of functions.

= G;: X; =2 {0,1}™, i€l(n)
— G is computable by a deterministic polynomial
algorithm G.
* G(i,x)=G{(x) for all i€l and xEX;
« there is a uniform sampling algorithm for X. On input i, it
outputs xEXi.

Pseudorandom Bit Generator

|Pr(A(i,z) =1:i = K(1"),z « {0,13'™
—Pr(AG,G,(x))=1):i = K1), x ¢ X, |
1

<__-
P(n)




| fi(fl(x)) i

l
0 o{s ]

Exp=(Exp,,:Z,,—Z,,x— g"mod p)

with 1={(p,9)|p is prime, g € Z; a primitive root}
is a bijective one-way function.

0 for0<x <(p-1)/2

1 for (p-1)/2<x<p-1

Is a hard-core predicate for Exp.

Exp can be treated as a one-way permutation,
identifying Z_, with Z_ .

Z,,={0,...p-2}

Z, ={,..p-1

using the mapping 0 —» p-1, 1 >1, ...,p-2 —> p-2
Induced PRG is a called Blum Micali Generator.

MSB, (x) :{




Blum-Micali-Yao’s Theorem

« Suppose fis a length preserving one-way
function. Let B be a hard core predicate for
f. Then the algorithm G defined by
G(x)=F(x)||B(x)=F(x).B(x) is a pseudo
random generator.

Let D be an algorithm distinguishing between
G(U,)and U,,,.
- Pr[D(GU,)) =1]-Pr[DU,,,)=1]>¢
Define: EY =[f(U,)bU,)],.x

E® =[f(U,)bU,)].
Note:G(U,)=f(U,)bU,)=EY




Also,Pr[D(U,,,) =1]

=Pr[D(f(U,)U,)=1][as, f is bijective]
=Pr[D(f (U,)bU,)) =1]Pr[bU,) =U,]
+Pr[D(f (U,)b(U,)) =1]Pr[bU,)=U,]

= %(PV[D( f(U,)bU,)) =1+Pr[D(f (U,)bU,)) =1])

B %(Pr[D(E“)) =1]+Pr[D(E?)=1])

~PrID(GWU,)) =1]-Pr[DU,,,) =1]

~PD(EY =1] - (PrID(EY) =1]+ PrID( E?) =1)

:%(Pr[D(E“’ —1]-Pr[D(E®)=1]) > ¢




Thus using D if we make an algorithm to guess the
hardcore predicate B(.) from y=f(x), then we are done.
Algorithm A:

1. Select & uniformly in {0,1}

2. If D(y.o) =1, output o, else 1-o

What is the probability that A is able to compute the
hardcore predicate?:
PrIA(f(X)=b(X)]=Pr[A(f(U,,)=b(U,)]
=Pr[D(f(U,)U,)=1 A U,;=b(U,)]
+Pr[D(f(U,)U,)=0 A 1-U,=b(U,)]
=%(Pr[D(f(Un)b(Un))=1]

+Pr{D(f(U,)b(U,))=0])

=%(Pr[D(f(Un)b(Un))=1]

+La-PrD(FU,)b(U,)1=1)

+=(Pr[D(f(U,)b(U,))=1]-Pr[D(f(U,)b(U, )]=1)

= NP NN

+=(Pr[D(E® =1]-Pr[D(E®) =1])

N N

> 5 +¢&. Thus we reach a contradiction.
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Let I=(1,),., be akey set with security parameter k,

and let Q € Z[X] be a positive polynomial. Let f=(f, : D, - D,)
be a family of one-way permutations with hard core predicate
B=(B, : D, > {0,1}),, and key generator K. Let G=G(f,B,Q)
be the induced pseudorandom bit generator.

iel

Is this a PR Bit Generator?
| X B |—

e

| fi<f1<x» B |

l
i e
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Proof

Then for every P.P.T Awith inputsiel,, ze{0,1}°%,

y € D, and output in {0,1}:

IPr(AGi,G, (x), £ (x)) =1:i < K1), x < D))

—Pr(A(i,z,y) =1:i < K1),z < {0,3°®,y < D)) < &(k)

Remark: The theorem states that for sufficiently large keys the
probability of distinguishing successfully between truly random
sequences and pseudorandom sequences-using a given efficient algorithm
is negligibly small, even if f.°%(x) is known.

Contradicting the pseudo-randomness:

Pr(A(i,G, (x), f°9(x)) =1:i < K(1*),x < D))
—Pr(A(i,z,y) =1:i < K@),z < {0,3°", y <~ D,) > &(k)
Fork e Kandi e I,, we consider the following sequence of
distributions: p, o, Pi1s-- Piggy 0N Z; ={0,13°“ x Dy,

12



The Hybrid Construction

ForkeKandiel,, we consider the following sequence of
distributions: p; o, Py, Piguy 0N Z; ={0,13°* x D.

Pio =10y, bQ(k)' y): (b, ..., bQ(k)) (_{Oil}o(k)v y< D}
Pis ={(b,,..., bQ(k)—l’ Bi(x), f;(x)): (b,..., bQ(k),l) <—{0,1}Q(k)71, X<« D}

Pir ={(b,,-.., bQ(k)—r’ Bi (%), B, (f;(x)),--., Bi( firil(x))v £ (x): (..., bQ(k)—r) ‘_{Ov:l-}’Q(k)?r X< D}

From the contradiction

Prob(A(i,z,y)=1;i «- K(k),z < {0,1}°%,y <~ D,)

= Prob(A(i,z,y)=1:i < K(K),(z,y) «2>—Z,)

Prob(A(i,G, (x),f 2 (x))=1;i < K(k),z <~ {0,1}°“,y «- D,)

= Prob(A(i,z,y)=1:i < K(K),(z,y) « 228 7.)

Thus our contradiction says that algorithm A is able to distinguish
between p;, (uniform distribution) and p; ., (of pseudorandom

sequences).

13



Difference between each iteration

Since f is bijective,

P ={(by . By, B (%), B (£, (X)), ..., Bi(f7 (), f700): (b, Bogo-r) ~{0.3°%" x«< D}
=0, 0y B (£, (X)), B (F.2 (X)), B (£, (X)), £ (X)) 2 (B, By, ) <= {0, 3% x <~ D}

We see that p;, differs from p, ., only at one position, namely at Q(k)-r. There the hard core

bit B;(x) is replaced by a truly random bit.

1 H =1 Piow _
% < Prob(A(i,z,y)=1:i < K(K),(z,y) «—2—Z,)

Prob(A(i,z,y)=1:i « K(K),(z,y) «2>—Z,)
Q1 (Prob(A(i,z,y)=1:i < K(K),(z,y) «22—Z,) -

=0 Prob(A(i,z,y)=1:i < K(K),(z,y) Pir Z)

Define algorithm A’ using A

Choose r, with 0 < r<Q(k), uniformly at random.

Independently choose random bits b;, b,,...,b,, ,, and

another random bit b.

For y=f.(x) € D,

A, 1.(x) = { b, if A(i,bl,:., B y-r-1:0: B (F;(X)), ..., By (£, (X)), f(x) =1
1-b otherwise

If A distinguishes between p; and p, ., it yields 1 with higher probability

if the (Q(k)-r)th bit of its input is B, (x) and is not a random bit.
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Success of A’ in guessing the
hard-core predicate

Pr(AG.f,(x)) = B,(x) i = K(k),x< D,)
=%+ PriA'G, f;(x)) =b| B;(x) =b)—Pr(A'(i, f;(x)) =b)

Choosing r uniformly,

1JnglPr(R r.[Pr(A'(i, f;(x)) =b|B;(x) =b,R=r)—-Pr(A(i, f;(x)) =b|R=r)]

%Q(k) 1[Pr(A(' f,(x)) =b | B;(x) =b) - Pr(A'(i, ,(x)) =b]
1 ekt
"o %

1,
2
% [AG,z,y)=1:i < K@), (z,y) <Pt —7,) -

(Pr
il(Pr[A(i,z,y)zl:h— K@), (z,y)«2—27)

1 1
>+
2 Q(k)P(k)

This contradicts the hard-core predicate property.

Next Bit Unpredictability
Let X=(X,X,...X,) be a distribution on {0,1}".
X is next-bit unpredictable if for every PPT
predictor algorithm P, there exists a negligible
function £(n) such that,

[P(X... X ) =X, ]——+8(n)

Ie[n]

Surprisingly next-bit unpredictability is equivalent
to pseudorandomness.
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Yao's Theorem

X is pseudorandom if and only if, it is next bit unpredictable.

Proof

X is pseudorandom if and only if, it is next bit unpredictable.
X is PR = Next bit is unpredictable
—Next bit is unpredictable = =X is PR

1
PrieR[n][P(Xl'“Xi—l) =X]1> E+£(n)

3i, PrP(X,..X;;) = X;]> %+£(n)
Define T such that:

e 0, if P(y,...Yiu) =V
VT LI P(Y,y ) # Y

1
Pl T =1 =
Pr,_[T(y) =1]>§+s(n)

Adv(T) > ¢(n), thus violating the PRNG
property.
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Proof of the converse

Let us prove the converse.
Suppose X is not PRNG. Then there is a PPT
algorithm T st.:
Adv(T)=|Pr[T(X)=1]-Pr[T(U,)=1]]>&(n)
wlog assume Pr[T(X)=1]> Pr[T(U,)=1].
Now construct a next bit predictor:
Let U,,..,U, be uniformly distributed random variables on
{0,1}.
D, =(U,.U,)
D, = (X,-U,)

Dy, = (XX, U, U,)
D; = (X;..XU;,...U,)

D, = (Xp-X,)

&(n) <Pr[T(D,) =1]-Pr[T(D,) =1]
=2 (Pr[T(D,) =1]-Pr[T (D) =1])

3i, st. Pr[T(D,) =1]-Pr{T (D, ,) =1]>ST”)

Define predictor algorithm P(X,...X;,Y;...y,) =1:

Yiolf T(Xpe XY Yo) =1
P(X,..X Yy ) =
( 1 iaYi yn) {1_ Vi, otherwise

Thus, PrP(X,..X, U,..U,) = X,]
=%(Pr[P(Xl...Xi_lui...Un) =X, |U, = X,]+
PrP(X,..X, U;..U,) = X, |U, =1- X,])
=%(Pr[P(Xl...XHXi...Un) = X,]+
PrIP(X,..X, 1= X;..U,) = X,])
=%(Pr|_‘r(x1...xi,1xi...un) =1]+

PrT (X,...X,1— X,..U,) =0])
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=%(Pr[|’(Di)=1]+
1-PI[T (X, X, 1= X..U ) =1])

:%+%([Prﬂ'(Di) 10— PHT (X, X, 1= X,..U ) =1])

_ %Jr ([Pr[T(D;) =1]—Pr[T(D,,) =1])

>%+%@m»

Thus, X is not next bit unpredictable.
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