Probability Distribution: Building up the notion of Pseudo-randomness

Debdeep Mukhopadhyay IIT Kharagpur

Probability Distribution

1. Probability Distribution: $p = (p_1, ..., p_n)$ is a tuple of elements $p_i \in R_n$, $0 \le p_i \le 1$, called probabilities,

such that $\sum_{i=1}^{n} p_i = 1$.

2. A probability space (X, p_X) is a finite set $X = \{x_1,...,x_n\}$ equipped with a probability distribution $p_X = \{p_1,...,p_n\}$.

 p_i is called the probability of x_i , $1 \le i \le n$. We also write $p_X(x_i) = p_i$ and consider p_X as a map $X \to [0,1]$, called the probability measure on X, associating with $x \in X$ its probability.

3. An event ε in a probability space (X,p_X) is a subset ε of X.

$$p_{X}(\varepsilon) = \sum_{y \in \varepsilon} p_{X}(y)$$
$$\therefore p_{X}(X) = 1$$

A probability space X is the model of a random experiment. n independent repetitions of the random experiment are modeled by the direct product: $X^n = X \times X \times ... \times X$

Some interesting results...

Let ε be an event in a probability space X, with $\Pr[\varepsilon] = p > 0$. Repeatedly, we perform the random experiment X independently. Let, G be the expected number of experiments of X, until ε occurs the first time. Prove that: $E(G) = \frac{1}{p}$

$$\Pr[G = t] = (1-p)^{t-1} p \Rightarrow E(G) = \sum_{t=1}^{\infty} tp(1-p)^{t-1} = -p \frac{d}{dp} \sum_{t=1}^{\infty} (1-p)^{t} = -p \frac{d}{dp} (\frac{1}{p} - 1) = \frac{1}{p}.$$

Another Useful result

Let R, S and B be jointly distributed r.v with values in $\{0,1\}$.

Assume that B and S are independent and that B is uniformly distributed:

$$Pr(B=0)=Pr(B=1)=1/2$$

Prove that: Pr(R=S)=1/2 + Pr(R=B|S=B)-Pr(R=B)

$$\begin{aligned} \Pr(S = B) &= \Pr(S = 0) \Pr(B = 0|S = 0) + \Pr(S = 1) \Pr(B = 1|S = 1) \\ &= \Pr(S = 0) \Pr(B = 0) + \Pr(S = 1) \Pr(B = 1) \\ &= \frac{1}{2} (\Pr(S = 0) + \Pr(S = 1)) = \frac{1}{2} \end{aligned}$$

$$Likewise, \Pr(S = \overline{B}) = \frac{1}{2}$$

$$\Pr(R = S) = \frac{1}{2} \Pr(R = B \mid S = B) + \frac{1}{2} \Pr(R = \overline{B} \mid S = \overline{B})$$

$$= \frac{1}{2} [\Pr(R = B \mid S = B) + 1 - \frac{1}{2} \Pr(R = B \mid S = \overline{B})]$$

$$= \frac{1}{2} + \frac{1}{2} [\Pr(R = B \mid S = B) - \frac{\Pr((R = B) \cap (S = \overline{B}))}{\Pr(S = \overline{B})}]$$

$$\therefore (R = B) = ((R = B) \cap (S = \overline{B})) \cup ((R = B) \cap (S = B))$$

$$\therefore \Pr(R = B) = \Pr((R = B) \cap (S = \overline{B})) + \Pr((R = B) \cap (S = B))$$

$$\Rightarrow \Pr(R = S) = \frac{1}{2} + \frac{1}{2} [\Pr(R = B \mid S = B) - \frac{\Pr(R = B) - \Pr(R = B) \cap (S = B)}{\Pr(S = \overline{B})}$$

$$= \frac{1}{2} + \frac{1}{2} [\Pr(R = B \mid S = B) - \frac{\Pr(R = B) - \Pr(R = B) - \Pr(R = B) | (S = B)}{1/2}$$

$$= \frac{1}{2} + \frac{1}{2} [\Pr(R = B \mid S = B) - \frac{\Pr(R = B) - \Pr(R = B) - \Pr(R = B) | (S = B)}{1/2}$$

$$= \frac{1}{2} + \Pr(R = B \mid S = B) - \Pr(R = B)$$

Statistical Distance between Probability Distributions

Let p and \tilde{p} be probability distributions on a finite set X. The statistical distance between p and \tilde{p} is:

dist
$$(p, \tilde{p}) = \frac{1}{2} \sum_{x \in X} |p(x) - \tilde{p}(x)|$$

The statistical distance between probability distributions p and \tilde{p} on a finite set X is the maximal distance between the probabilities of events in X, ie.

$$\operatorname{dist}(\tilde{p,p}) = \max_{\varepsilon \subseteq X} |p(\varepsilon) - \widetilde{p}(\varepsilon)|$$

The events in X are the subsets of X. We divide the subsets into three categories:

$$\varepsilon_{1} = \{x \in X \mid p(x) > \widetilde{p}(x)\}$$

$$\varepsilon_{2} = \{x \in X \mid p(x) < \widetilde{p}(x)\}$$

$$\varepsilon_{3} = \{x \in X \mid p(x) = \widetilde{p}(x)\}$$
We have $0 = p(X) - \widetilde{p}(X) = \sum_{i=1}^{3} [p(\varepsilon_{i}) - \widetilde{p}(\varepsilon_{i})]$

$$\therefore p(\varepsilon_{3}) - \widetilde{p}(\varepsilon_{3}) = 0 \Rightarrow p(\varepsilon_{1}) - \widetilde{p}(\varepsilon_{1}) = -(p(\varepsilon_{2}) - \widetilde{p}(\varepsilon_{2}))$$
Now because of the definition of ε_{1} ,
$$\max_{\varepsilon \in X} |p(\varepsilon) - \widetilde{p}(\varepsilon)| = p(\varepsilon_{1}) - \widetilde{p}(\varepsilon_{1}) = -(p(\varepsilon_{2}) - \widetilde{p}(\varepsilon_{2}))$$

$$\therefore \operatorname{dist}(p, \widetilde{p}) = \frac{1}{2} \sum_{x \in X} |p(x) - \widetilde{p}(x)|$$

$$= \frac{1}{2} (\sum_{x \in \varepsilon_{1}} [p(x) - \widetilde{p}(x)] - \sum_{x \in \varepsilon_{2}} [p(x) - \widetilde{p}(x)])$$

$$= \frac{1}{2} [(p(\varepsilon_{1}) - \widetilde{p}(\varepsilon_{1})) - (p(\varepsilon_{2}) - \widetilde{p}(\varepsilon_{2}))] = \max_{\varepsilon \in X} |p(\varepsilon) - \widetilde{p}(\varepsilon)|$$

Indistinguishable Distributions

p and \tilde{p} are called polynomially close or ε -indistinguishable if:

$$\operatorname{dist}(\tilde{p,p}) \le \varepsilon(n) = \frac{1}{P(n)}$$

where $\varepsilon(n)$ is a negligible quantity. p(n) is a polynomial in n.

Pseudo-random sequence: No efficient observer can distinguish it from a uniformly chosen string of the same length.

This approach leads to the concept of pseudorandom generators, which is a fundamental concept with lot of applications.

Proof

Let $J_k = \{n \mid n = rs, r, s \text{ are primes}, |r| = |s| = k, r \neq s\}$ and $x \leftarrow Z_n$ and $x \leftarrow Z_n^*$ are polynomially close. Is the result dependent on the choice of r and s?

Pseudorandom Bit Generator

- Let I=(I_n)_{n∈N} be a key set with security parameter n, and let K be a probabilistic sampling algorithm for I, which on input (n) outputs an I∈I_n. Let I be a polynomial function in the security parameter.
- A pseudorandom bit generator with key generator K and stretch function / is a family of functions G=(G_i)_{icl} of functions.
 - $-G_i: X_i \rightarrow \{0,1\}^{l(n)}, i \in I(n)$
 - G is computable by a deterministic polynomial algorithm G.
 - G(i,x)=G_i(x) for all iEI and xEX_i
 - there is a uniform sampling algorithm for X. On input i, it outputs xEX_i.

Pseudorandom Bit Generator

$$|\Pr(A(i,z) = 1 : i = K(1^n), z \leftarrow \{0,1\}^{l(n)} - \Pr(A(i,G_i(x)) = 1) : i = K(1^n), x \leftarrow X_i | \le \frac{1}{P(n)}$$

$$Exp = (Exp_{p,g} : Z_{p-1} \to Z_p^*, x \to g^x \bmod p)$$

with $I=\{(p,g)|p \text{ is prime, } g \in Z_p^* \text{ a primitive root}\}$ is a bijective one-way function.

MSB_p(x) =
$$\begin{cases} 0 \text{ for } 0 \le x \le (p-1)/2 \\ 1 \text{ for } (p-1)/2 \le x \le p-1 \end{cases}$$

is a hard-core predicate for Exp.

Exp can be treated as a one-way permutation, identifying Z_{p-1} with Z_p^* .

$$Z_{p-1} = \{0, ..., p-2\}$$

$$Z_p^* = \{1, ..., p-1\}$$

using the mapping $0 \rightarrow p-1, 1 \rightarrow 1, ..., p-2 \rightarrow p-2$

Induced PRG is a called Blum Micali Generator.

Blum-Micali-Yao's Theorem

 Suppose f is a length preserving one-way function. Let B be a hard core predicate for f. Then the algorithm G defined by G(x)=F(x)||B(x)=F(x).B(x) is a pseudo random generator.

Let D be an algorithm distinguishing between $G(U_n)$ and U_{n+1} .

$$\therefore \Pr[D(G(U_n)) = 1] - \Pr[D(U_{n+1}) = 1] > \varepsilon$$

Define:
$$E^{(1)} = [f(U_n).b(U_n)]_{n \in \mathbb{N}}$$

$$E^{(2)} = [f(U_n).\overline{b}(U_n)]_{n \in \mathbb{N}}$$

Note : $G(U_n) = f(U_n).b(U_n) = E^{(1)}$

$$\begin{aligned} &Also, \Pr[D(U_{n+1}) = 1] \\ &= \Pr[D(f(U_n).U_1) = 1][as, f \text{ is bijective}] \\ &= \Pr[D(f(U_n).b(U_n)) = 1]\Pr[b(U_n) = U_1] \\ &+ \Pr[D(f(U_n).\bar{b}(U_n)) = 1]\Pr[\bar{b}(U_n) = U_1] \\ &= \frac{1}{2}(\Pr[D(f(U_n).b(U_n)) = 1] + \Pr[D(f(U_n).\bar{b}(U_n)) = 1]) \\ &= \frac{1}{2}(\Pr[D(E^{(1)}) = 1] + \Pr[D(E^{(2)}) = 1]) \end{aligned}$$

$$\therefore \Pr[D(G(U_n)) = 1] - \Pr[D(U_{n+1}) = 1]$$

$$= \Pr[D(E^{(1)} = 1] - \frac{1}{2} (\Pr[D(E^{(1)}) = 1] + \Pr[D(E^{(2)}) = 1])$$

$$= \frac{1}{2} (\Pr[D(E^{(1)} = 1] - \Pr[D(E^{(2)}) = 1]) > \varepsilon$$

Thus using D if we make an algorithm to guess the hardcore predicate B(.) from y=f(x), then we are done. Algorithm A:

- 1. Select σ uniformly in $\{0,1\}$
- 2. If $D(y.\sigma) = 1$, output σ , else $1-\sigma$

```
hardcore predicate?:  \begin{aligned} & \Pr[A(f(X) = b(X)] = \Pr[A(f(U_n) = b(U_n)] \\ & = \Pr[D(f(U_n)U_1) = 1 \ \land \ U_1 = b(U_n)] \\ & + \Pr[D(f(U_n)U_1) = 0 \ \land \ 1 - U_1 = b(U_n)] \\ & = \frac{1}{2} (\Pr[D(f(U_n)b(U_n)) = 1] \\ & + \Pr[D(f(U_n)\bar{b}(U_n)) = 0]) \\ & = \frac{1}{2} (\Pr[D(f(U_n)\bar{b}(U_n)) = 1] \\ & + \frac{1}{2} (1 - \Pr[D(f(U_n)\bar{b}(U_n)) = 1] \\ & + \frac{1}{2} (1 - \Pr[D(f(U_n)\bar{b}(U_n)) = 1] - \Pr[D(f(U_n)\bar{b}(U_n)) = 1) \\ & = \frac{1}{2} + \frac{1}{2} (\Pr[D(f(U_n)b(U_n)) = 1] - \Pr[D(f(U_n)\bar{b}(U_n)) = 1] \\ & = \frac{1}{2} + \frac{1}{2} (\Pr[D(E^{(1)} = 1] - \Pr[D(E^{(2)}) = 1]) \\ & > \frac{1}{2} + \varepsilon. \text{ Thus we reach a contradiction.} \end{aligned}
```

What is the probability that A is able to compute the

Let $I=(I_k)_{k\in N}$ be a key set with security parameter k, and let $Q\in Z[X]$ be a positive polynomial. Let $f=(f_i:D_i\to D_i)_{i\in I}$ be a family of one-way permutations with hard core predicate $B=(B_i:D_i\to\{0,1\})_{i\in I}$ and key generator K. Let G=G(f,B,Q) be the induced pseudorandom bit generator.

Proof

```
Then for every P.P.T A with inputs i \in I_k, z \in \{0,1\}^{Q(k)}, y \in D_i and output in \{0,1\}: |Pr(A(i,G_i(x),f_i^{Q(k)}(x)) = 1: i \leftarrow K(1^k), x \leftarrow D_i) - Pr(A(i,z,y) = 1: i \leftarrow K(1^k), z \leftarrow \{0,1\}^{Q(k)}, y \leftarrow D_i)| \le \varepsilon(k)
```

Remark: The theorem states that for sufficiently large keys the probability of distinguishing successfully between truly random sequences and pseudorandom sequences-using a given efficient algorithm is negligibly small, even if $f_i^{Q(k)}(x)$ is known.

Contradicting the pseudo-randomness:

$$\begin{aligned} & \Pr(\mathbf{A}(\mathbf{i}, \mathbf{G}_{\mathbf{i}}(x), f_{i}^{\mathcal{Q}(k)}(x)) = 1 : i \leftarrow K(\mathbf{1}^{k}), x \leftarrow D_{i}) \\ & - \Pr(\mathbf{A}(\mathbf{i}, z, y) = 1 : i \leftarrow K(\mathbf{1}^{k}), z \leftarrow \{0, 1\}^{\mathcal{Q}(k)}, y \leftarrow D_{i}) > \varepsilon(k) \\ & \text{For } \mathbf{k} \in \mathbf{K} \text{ and } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}, \text{ we consider the following sequence of distributions: } p_{i,0}, p_{i,1}, ..., p_{i,\mathcal{Q}(k)} \text{ on } \mathbf{Z}_{\mathbf{i}} = \{0, 1\}^{\mathcal{Q}(k)} \times D_{i}. \end{aligned}$$

The Hybrid Construction

```
For \mathbf{k} \in \mathbf{K} and \mathbf{i} \in \mathbf{I}_{\mathbf{k}}, we consider the following sequence of distributions: p_{i,0}, p_{i,1}, \dots, p_{i,Q(k)} on \mathbf{Z}_{\mathbf{i}} = \{0,1\}^{Q(k)} \times D_{i}. p_{i,0} = \{(b_{1}, \dots, b_{Q(k)}, y) : (b_{1}, \dots, b_{Q(k)}) \leftarrow \{0,1\}^{Q(k)}, y \leftarrow D_{i}\} p_{i,1} = \{(b_{1}, \dots, b_{Q(k)-1}, B_{i}(x), f_{i}(x)) : (b_{1}, \dots, b_{Q(k)-1}) \leftarrow \{0,1\}^{Q(k)-1}, x \leftarrow D_{i}\} \dots p_{i,r} = \{(b_{1}, \dots, b_{Q(k)-r}, B_{i}(x), B_{i}(f_{i}(x)), \dots, B_{i}(f_{i}^{r-1}(x)), f_{i}^{r}(x)) : (b_{1}, \dots, b_{Q(k)-r}) \leftarrow \{0,1\}^{Q(k)-r}, x \leftarrow D_{i}\} \dots p_{i,Q(k)} = \{B_{i}(x), B_{i}(f_{i}(x)), \dots, B_{i}(f_{i}^{Q(k)-1}(x)), f_{i}^{Q(k)}(x)) : x \leftarrow D_{i}\}
```

From the contradiction

```
\begin{split} &\operatorname{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}){=}1;\mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}),\mathsf{z} \leftarrow \{0,1\}^{\mathsf{Q}(\mathsf{k})},\, y \leftarrow D_i) \\ &= \operatorname{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}){=}1;\mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}),\! (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{p}_{i,0}} Z_i) \\ &\operatorname{Prob}(\mathsf{A}(\mathsf{i},\mathsf{G}_i(\mathsf{x}),\! f_i^{\mathsf{Q}(\mathsf{k})}(\mathsf{x})){=}1;\mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}),\! z \leftarrow \{0,1\}^{\mathsf{Q}(\mathsf{k})},\, y \leftarrow D_i) \\ &= \operatorname{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}){=}1;\mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}),\! (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{p}_{i,\mathsf{Q}(\mathsf{k})}} Z_i) \\ &\operatorname{Thus\ our\ contradiction\ says\ that\ algorithm\ A\ is\ able\ to\ distinguish\ between\ \mathsf{p}_{i,0}\ (uniform\ distribution)\ and\ \mathsf{p}_{i,\mathsf{Q}(\mathsf{k})}\ (of\ pseudorandom\ sequences). \end{split}
```

Difference between each iteration

Since f is bijective,

$$\begin{split} \mathbf{p}_{i,r} = & \{(b_1, ..., b_{Q(k)-r}, B_i(x), B_i(f_i(x)), ..., B_i(f_i^{r-1}(x)), f_i^r(x)) : (b_1, ..., b_{Q(k)-r}) \leftarrow \{0, 1\}^{\mathcal{Q}^{(k)-r}}, x \leftarrow D_i\} \\ = & \{(b_1, ..., b_{Q(k)-r}, B_i(f_i(x)), B_i(f_i^2(x)), ..., B_i(f_i^r(x)), f_i^{r+1}(x)) : (b_1, ..., b_{Q(k)-r}) \leftarrow \{0, 1\}^{\mathcal{Q}^{(k)-r}}, x \leftarrow D_i\} \end{split}$$

We see that $p_{i,r}$ differs from $p_{i,r+1}$ only at one position, namely at Q(k)-r. There the hard core bit $B_i(x)$ is replaced by a truly random bit.

$$\begin{split} \frac{1}{\mathsf{P}(\mathsf{k})} < \mathsf{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}) = 1 : \mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}), (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{P}_{\mathsf{L}(\mathsf{Q}(\mathsf{k})}} Z_i) - \\ & \qquad \qquad \mathsf{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}) = 1 : \mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}), (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{P}_{\mathsf{L}(\mathsf{y})}} Z_i) \\ = \sum_{r=0}^{\mathcal{Q}(k)-1} (\mathsf{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}) = 1 : \mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}), (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{P}_{\mathsf{L}r-1}} Z_i) - \\ & \qquad \qquad \mathsf{Prob}(\mathsf{A}(\mathsf{i},\mathsf{z},\mathsf{y}) = 1 : \mathsf{i} \leftarrow \mathsf{K}(\mathsf{k}), (\mathsf{z},\mathsf{y}) \xleftarrow{-\mathsf{P}_{\mathsf{L}r}} Z_i) \end{split}$$

Define algorithm A' using A

Choose r, with $0 \le r < Q(k)$, uniformly at random.

Independently choose random bits $b_1, b_2, ..., b_{Q(k)-r-1}$ and another random bit b.

For $y=f_i(x) \in D_i$

$$A'(i, f_i(x)) = \begin{cases} b, if \ A(i, b_1, ..., b_{Q(k)-r-1}, b, B_i(f_i(x)), ..., B_i(f_i^r(x)), f_i^{r+1}(x)) = 1\\ 1-b \ \text{otherwise} \end{cases}$$

If A distinguishes between $p_{i,r}$ and $p_{i,r+1}$ it yields 1 with higher probability if the (Q(k)-r)th bit of its input is $B_i(x)$ and is not a random bit.

Success of A' in guessing the hard-core predicate

$$\begin{split} &\Pr(\mathbf{A}'(\mathbf{i},\mathbf{f}_i(x)) = B_i(x) : i = K(k), x \leftarrow D_i) \\ &= \frac{1}{2} + \Pr[A'(i,f_i(x)) = b \mid B_i(x) = b) - \Pr(A'(i,f_i(x)) = b) \\ &\text{Choosing r uniformly,} \\ &= \frac{1}{2} + \sum_{r=0}^{Q(k)-1} \Pr(R = r) . [\Pr(A'(i,f_i(x)) = b \mid B_i(x) = b, R = r) - \Pr(A'(i,f_i(x)) = b \mid R = r)] \\ &= \frac{1}{2} + \frac{1}{Q(k)} \sum_{r=0}^{Q(k)-1} [\Pr(A'(i,f_i(x)) = b \mid B_i(x) = b) - \Pr(A'(i,f_i(x)) = b)] \\ &= \frac{1}{2} + \frac{1}{Q(k)} \sum_{r=0}^{Q(k)-1} (\Pr[A(i,z,y) = 1 : i \leftarrow K(1^k), (z,y) \leftarrow \frac{p_{i,r+1}}{2} Z_i) - \sum_{r=0}^{Q(k)-1} (\Pr[A(i,z,y) = 1 : i \leftarrow K(1^k), (z,y) \leftarrow \frac{p_{i,r}}{2} Z_i) \\ &> \frac{1}{2} + \frac{1}{Q(k)P(k)} \end{split}$$
This contradicts the hard-core predicate property.

Next Bit Unpredictability

Let $X=(X_1X_2...X_n)$ be a distribution on $\{0,1\}^n$. X is next-bit unpredictable if for every PPT predictor algorithm P, there exists a negligible function $\varepsilon(n)$ such that,

$$\Pr_{i \in [n]} [P(X_1 ... X_{i-1}) = X_i] \le \frac{1}{2} + \varepsilon(n)$$

Surprisingly next-bit unpredictability is equivalent to pseudorandomness.

Yao's Theorem

X is pseudorandom if and only if, it is next bit unpredictable.

Proof

X is pseudorandom if and only if, it is next bit unpredictable.

X is PR \Rightarrow Next bit is unpredictable

 \neg Next bit is unpredictable $\Rightarrow \neg X$ is PR

$$\Pr_{i \in_{\mathbb{R}[n]}} [P(X_1 ... X_{i-1}) = X_i] > \frac{1}{2} + \varepsilon(n)$$

$$\exists i, \Pr[P(X_1...X_{i-1}) = X_i] > \frac{1}{2} + \varepsilon(n)$$

Define T such that:

$$T(y_1...y_n) = \begin{cases} 0, & \text{if } P(y_1...y_{i-1}) = y_i \\ 1, & \text{if } P(y_1...y_{i-1}) \neq y_i \end{cases}$$

$$\Pr_{y \in U_n}[T(y) = 1] = \frac{1}{2}$$

$$\Pr_{y \in X}[T(y) = 1] > \frac{1}{2} + \varepsilon(n)$$

 $Adv(T) > \varepsilon(n)$, thus violating the PRNG property.

Proof of the converse

```
Let us prove the converse. Suppose X is not PRNG. Then there is a PPT algorithm T st.:  \text{Adv}(T) = |\text{Pr}[T(X) = 1] - \text{Pr}[T(U_n) = 1]| > \varepsilon(n)  wlog assume  \text{Pr}[T(X) = 1] > \text{Pr}[T(U_n) = 1].  Now construct a next bit predictor: Let U_1, \dots, U_n be uniformly distributed random variables on \{0,1\}.  D_0 = (U_1 \dots U_n)   D_1 = (X_1 \dots U_n)   \dots   D_{i-1} = (X_1 \dots X_{i-1} U_i \dots U_n)   D_i = (X_1 \dots X_i U_{i+1} \dots U_n)   \dots   D_n = (X_1 \dots X_n)
```

$$\begin{split} \varepsilon(n) &< \Pr[T(D_n) = 1] - \Pr[T(D_0) = 1] \\ &= \sum_i (\Pr[T(D_i) = 1] - \Pr[T(D_{i-1}) = 1]) \\ \exists i, \text{ st. } \Pr[T(D_i) = 1] - \Pr[T(D_{i-1}) = 1] > \frac{\varepsilon(n)}{n} \\ \text{Define predictor algorithm } \Pr[X_1 ... X_{i-1} y_i ... y_n) = 1 \\ \Pr[X_1 ... X_{i-1} y_i ... y_n) = \begin{cases} y_i, if & T(x_1 ... x_{i-1} y_i ... y_n) = 1 \\ 1 - y_i, & \text{otherwise} \end{cases} \\ Thus, \Pr[P(X_1 ... X_{i-1} U_i ... U_n) = X_i] \\ &= \frac{1}{2} (\Pr[P(X_1 ... X_{i-1} U_i ... U_n) = X_i \mid U_i = X_i] + \\ \Pr[P(X_1 ... X_{i-1} U_i ... U_n) = X_i \mid U_i = 1 - X_i]) \\ &= \frac{1}{2} (\Pr[P(X_1 ... X_{i-1} X_i ... U_n) = X_i] + \\ \Pr[P(X_1 ... X_{i-1} 1 - X_i ... U_n) = X_i]) \\ &= \frac{1}{2} (\Pr[T(X_1 ... X_{i-1} X_i ... U_n) = 1] + \\ \Pr[T(X_1 ... X_{i-1} 1 - X_i ... U_n) = 0]) \end{split}$$

$$\begin{split} &= \frac{1}{2} (\Pr[T(D_i) = 1] + \\ &1 - \Pr[T(X_1 ... X_{i-1} 1 - X_i ... U_n) = 1]) \\ &= \frac{1}{2} + \frac{1}{2} ([\Pr[T(D_i) = 1] - \Pr[T(X_1 ... X_{i-1} 1 - X_i ... U_n) = 1]) \\ &= \frac{1}{2} + ([\Pr[T(D_i) = 1] - \Pr[T(D_{i-1}) = 1]) \\ &> \frac{1}{2} + \frac{1}{n} (\varepsilon(n)) \\ &Thus, \ X \text{ is not next bit unpredictable.} \end{split}$$