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Notion of Security

• “A Good disguise should not reveal the 
person’s height”
– Shafi Goldwasser and Silvio Micali, 1982
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Design of Encryption Algorithms

• Encryption algorithms are used for privacy 
of data.
– which means they do not leak any information 

about the plaintext
• The question is when are we satisfied that 

the cipher really does not leak?
– For this we need to know the power of the 

adversary.

What Shannon said?

• Shannon said in his classical work that 
using a one-time pad, the cipher achieved 
“perfect secrecy”
– no attacker, even with infinite power of 

computation can obtain any information about 
the plain-text.

– But the one-time pad is impractical.
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But Cryptographers want provable 
security

• Lets assume that the attacker is a 
“probabilistic polynomial time” (PPT) 
machine
– that’s a more practical assumption!

• So, now the question is can the adversary 
(attacker) obtain information about the 
plaintext efficiently?
– for our purpose efficiently means in 

polynomial time.

PPT 

• Probabilistic Algorithms or randomized 
algorithms, A, may toss a coin a finite 
number of times during its computation.

• The output y, and the next step may 
depend on the results of the preceding 
coin tosses.

• The coin is in general fair.
• Examples: Primality test algorithms, 

factoring algorithms etc.



4

Definition of Semantic Security (SS)

• Here ε(n) is a negligible quantity.

• Notion tries to attempt ideal security.

• That is the eavesdropper is disconnected from the communication.
• In spite of observing the ciphertext, he obtains no extra interesting 

observation than the case when he has not seen the ciphertext.  
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simulating algorithm S such that:
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Message Indistinguishability (MI)

• SS and MI are equivalent
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Proofs : SS => MI
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If X={m , }, : ( ) 0,  ( ) 1,  h(): empty output string
From SS, for every adversary A there is a simulator S, st.
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SS=>MI
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For every , {0,1} ,  for every algorithm A that 

runs in time  ( ),  for every {0,1} ,
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SS=>MI
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(t,ε)-MI=>(t’,2ε)-SS

• Thus ┐(t’,2ε)-SS =>┐ (t,ε)-MI

define ( ),  where z is some information on m
        Pick ( , ) ( ) at random
        Return ( (0, ), , )
/* Note that the run time of S is running time of A+poly(n) */
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(t,ε)-MI=>(t’,2ε)-SS
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