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Debdeep Mukhopadhyay
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Background

• We have seen how to make Pseudo-
random generators from one way 
functions.

• We shall proceed to make Pseudo-random 
functions from generators.

• Let G be a PSRG with expansion factor 
l(n)=2n (i,e G is length doubling)

• Define, G(s)=(G0(s),G1(s)), where |s|= 
|G0(s)|=|G1(s)|=n. 
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• Use G to make keyed function F
– uses an n bit key
– takes one bit as input
– outputs another n bits

• For a key k, define,
– Fk(0)=G0(k)
– Fk(1)=G1(k)

• We claim that this is a pseudorandom 
function! Why?

Simple Reason
• This follows from the fact that G is a 

pseudorandom generator.
• A random function mapping one bit to n bits is 

defined by a table of two n-bit values, each of 
which is random.

• Here we have defined a keyed function, where 
each n-bit value is pseudorandom

(as the key is randomly chosen)
• Thus Fk cannot be distinguished from a random 

function by a PPT algorithm.
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Extend to two bit input

• Fk(00)=G0(G0(k))
• Fk(01)=G1(G0(k))
• Fk(10)=G0(G1(k))
• Fk(11)=G1(G1(k))

– in order to show that Fk is pseudorandom, 
thus we have to reason that the four strings, 
G0(G0(k)), G1(G0(k)), G0(G1(k)), G1(G1(k)) are 
pseudorandom.

Hybrid Construction

• G0(G0(k)) G0(k0) r1

• G1(G0(k)) G1(k0) r2

• G0(G1(k)) G0(k1) r3

• G1(G1(k)) G1(k1) r4

• Here k0, k1, r1, r2, r3 and r4 are randomly 
chosen n bit strings.
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Hybrid Construction

• G0(G0(k)) G0(k0) r1

• G1(G0(k)) G1(k0) r2

• G0(G1(k)) G0(k1) r3

• G1(G1(k)) G1(k1) r4

If you can distinguish between 
these strings then you can distinguish 
between G(k)=(G0(k),G1(k)) 
and (k0, k1)

If you can distinguish between 
these strings then you can 
distinguish either between G(k0) 
and (r1,r2), or G(k1) and (r1, r2)

as both of these
contradicts the 

pseudo-randomness of G

Combining, these facts we have Fk as pseudorandom.

More generalization
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Explanation
• The construction can be viewed as a full binary tree of 

depth n.
• The value at the root is the key k.
• The value of a left child of a node with value k’ is G0(k’) 
• The value of a right child of a node with value k’ is G1(k’)
• The value of Fk(x) is thus obtained by traversing the tree 

according to x
– if xi=0 traverse left
– else traverse right

• The entire tree is exponential in n.
– however to compute the function the entire tree need not be 

stored. we just need to compute the values on the path and 
arrive at a leaf.
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Theorem

• If G is a pseudorandom generator with 
expansion factor l(n)=2n, then the above 
construction is a pseudorandom function.

Proof 

• Let D be a PPT algorithm which is given 
oracle access to a function that is either a 
random function that maps n bits to n bits, 
or the function Fk for a randomly chosen k.
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Proof

• Consider the distribution of trees, obtained 
by varying the leaf randomly.

• Each leaf of the binary tree of depth n, is 
thus a sequence of n bits.

• use Hn
0 to denote the distribution.

– note this is the distribution may be thought of 
being on the functions Fk. 

Proof

• Likewise, define Hn
i, for 0≤i≤n as follows:

– values for node i is chosen at random.
– values for nodes j≥i+1 are chosen as per the function 

definition. That is see the value of its parent. If the 
value is k’:

• value is G0(k’) if is left child
• value is G1(k’) if is right child

– note that from the point of view of the function, the 
values of the nodes at levels 0 through i-1 are 
irrelevant. This is because they do not decide the 
value of the leaves.  
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What is Hn
n?

• It is a true random function mapping n bits 
to n bits.
– this is because all the leaf values are 

randomly chosen.
• So, the distinguisher D is able to 

distinguish between the distribution Hn
0 

(the actual construction) and Hn
n (the 

random function)

Construct D’
(distinguisher against G)

• Assume that D (distinguisher against the 
PRF Fk) makes t(n) queries to the function.

• The output is of length 2n.t(n)
• Thus D’ has 2n.t(n) bits of either truly 

random bits or output generated by t(n) 
invocations of the function G(s), for a 
randomly chosen s.
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Strategy of D’

• D’ answers queries of D as follows:
– D asks queries of the form x1x2…xn

– D’ chooses a i randomly, and goes to node i 
of the initially empty binary tree.

– It computes the values of the nodes at level 
i+1 with its sample of length 2n as follows:

• labels the left node with left part of the sample
• labels the right node with right part of the sample

Observations
• If D’ receives a truly random string of length 

2nt(n), then it answers D exactly according to 
Hn

i+1. Why?
• If D’ receives a pseudorandom input, then it 

answers D exactly according to Hn
i. 

• Thus, if for some i, D distinguishes Hn
i and Hn

i+1

with a probability of ε(n)/n, then with the same 
probability D’ also distinguishes t(n) invocations 
of G(s) from a truly random string of length 
2n.t(n) with probability ε(n)/n. 

• If ε(n) is negligible, we violate the assumption 
that G is a PRG.
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Reading

• How to Construct Random Functions?
– O. Goldreich, Goldwasser, Micali, JACM 1986

One way functions

• If one way functions then pseudo random 
generators exist.

• If pseudorandom generators exist, so does 
pseudorandom functions.

• One way functions are hence necessary.
• Are one way functions sufficient also?
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Theorem

• Pseudorandom generators exist only if one-way 
functions exist  or
If there are pseudorandom generators, then 
there exists one-way functions.

Let G be a pseudo-random generator with expansion 
factor of length 2n. We show G is itself one-way. We 
shall show that the inability to invert G can be used to 
distinguish the output of G from random. 

Proof

A,G

2n

Let A be a PPT algorithm, and then define:
                (n)=Pr[Invert ( ) 1]
Define D a PPT as follows:
Input : w {0,1}
1. Run A on w. x=A(w)
2. If w=G(x), then return 1, else 0.  

nε =

∈
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Computing the success probability 
of D.

If w is random, what is the probability that D returns 1?

2n

n

-n
w {0,1}

Note that there are at most 2  elements in the range of G. 
If w falls outside the range, then A cannot invert and so 
D answers 0. Hence, Pr [D(w)=1] 2

←
≤

Conclusion

2nw {0,1} {0,1}

If w=G(s) for a uniformly chosen s, then by definition A 
computes a correct inverse, with probability exactly (n). 
This is the same probability with which D returns 1.

|Pr [ ( ) 1] Pr ns
D w

ε

← ←
∴ = − -n[ ( ( )) 1] | (n)-2 .

Hence, if (n) is negligible, then D also have a significant 
success probability. 

D G s ε

ε

= ≥
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Question

• Does secured private key encryption imply 
the existence of one-way functions?
– not straightforward
– there may be construction techniques which 

do not depend on the above primitives.
• We show that it really does, assuming the 

weakest form of security notions of the 
encryption scheme.

Theorem

• If there exists a private key encryption that 
has indistinguishable encryptions in the 
presence of an eavesdropper, the one-
way functions exist!
– note for a perfect cipher, where the key length 

is same or more than the message length, 
such an assumption need not hold.

– so we are considering practical ciphers, 
where the key length is less than the 
message length.
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Proof

k

Define =(Gen,Enc,Dec) be a private key encryption scheme 
that has indistuishable encryptions in the presence of an adversary. 
Define f: f(k,m,r)=(Enc ( , ), )
Here k, m and r are respectively of n, 2n

m r m

Π

and l(n) bits. That is the 
encryption uses at most l(n) bits of randomness. We claim that this 
function is one-way. 

Proof

,

Consider a PPT algorithm A, which inverts the function, f with a 
probability of (n). 

(n)=Pr[ (n)=1]. Assume (n) is non-negligible. 

Now define a PPT algorithm A', which runs an experiment P
A fInvert

ε
ε ε∴

CPA
A, 'riv (n). Π
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CPA
A, '

2n
0 1

b

Now define a PPT algorithm A', which runs an experiment Priv (n). 

1. A' chooses random m ,m {0,1}  and output the two messages. 
It receives a challenge c, which is the encryption of m ,  where 

Π

←

0

0

b is 
randomly chosen.
2. A' has to say whether b=0 or 1. A' runs A(c,m ) to obtain (k',m',r'). 
If f(k',m',r')=(c,m ),  then A' outputs 0. Else it outputs a random bit.

0If c has been generated by encrypting m  [ ,  0] and A is able 
to invert, then we see that A' gives correct answer. Otherwise, if A 
is unable to invert, A' has a probability of 1/2 being correct.

Pr

i e b =

∴ ,A'
1[Priv ( ) 1| 0] Pr[ | 0] (1 Pr[ | 0])
2

1 1                                          = (n)+ (1 (n))= (1 (n))
2 2

CPA
A An b invert b invert b

ε ε ε

Π = = = = + − =

− +
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Proof

1

0

If  c has been generated by encrypting m  (i,e b=1) by a key say k, what is the 
probability that A' returns 1?
Note that c must be the ciphertext of the message m  for some other value of the 
key, say 0

n 2
0

0 0

k'. So, when (c,m ) is being given to A, the probability that c is actually the 

ciphertext of a randomly chosen m  is atmost 2 .2 2 . Then A inverts and obtains 
(k',m ,r"), and if f(k',m ,r")=(c,m

n n− −=

0 ),  then it returns 0. Now this wrong, as b=1.
Otherwise, invert does not take place and there is 1/2 probability of A' to return 
the correct bit. 

Conclusion

-n
,A' A

-n
,A'

2

1 1Pr[Priv (n)=1|b=0]= (1-Pr[Invert |b=1]) (1-2 )
2 2

1 1 1 1Combining, Pr[Priv (n)=1] . (1 (n))+ . (1-2 )
2 2 2 2
1 ( ) 1                                               =
2 4 2

CPA

CPA

n

n

ε

ε

Π

Π

+

∴ ≥

≥ +

+ −

Thus the indistinguishability of the encryption scheme under 
the assumption of an eavesdropper is violated. Thus ε(n) must be 

negligible.


