Construction of Pseudo-random Functions

Debdeep Mukhopadhyay
IIT Kharagpur

Background

- We have seen how to make Pseudo-random generators from one way functions.
- We shall proceed to make Pseudo-random functions from generators.
- Let G be a PSRG with expansion factor l(n)=2n (i,e G is length doubling)
- Define, G(s)=(G₀(s),G₁(s)), where |s|=|G₀(s)|=|G₁(s)|=n.
• Use G to make keyed function F
 – uses an n bit key
 – takes one bit as input
 – outputs another n bits
• For a key k, define,
 – $F_k(0) = G_0(k)$
 – $F_k(1) = G_1(k)$
• We claim that this is a pseudorandom function! Why?

Simple Reason

• This follows from the fact that G is a pseudorandom generator.
• A random function mapping one bit to n bits is defined by a table of two n-bit values, each of which is random.
• Here we have defined a keyed function, where each n-bit value is pseudorandom (as the key is randomly chosen)
• Thus F_k cannot be distinguished from a random function by a PPT algorithm.
Extend to two bit input

- $F_k(00) = G_0(G_0(k))$
- $F_k(01) = G_1(G_0(k))$
- $F_k(10) = G_0(G_1(k))$
- $F_k(11) = G_1(G_1(k))$

– in order to show that F_k is pseudorandom, thus we have to reason that the four strings, $G_0(G_0(k))$, $G_1(G_0(k))$, $G_0(G_1(k))$, $G_1(G_1(k))$ are pseudorandom.

Hybrid Construction

- $G_0(G_0(k)) \rightarrow G_0(k_0) \rightarrow r_1$
- $G_1(G_0(k)) \rightarrow G_1(k_0) \rightarrow r_2$
- $G_0(G_1(k)) \rightarrow G_0(k_1) \rightarrow r_3$
- $G_1(G_1(k)) \rightarrow G_1(k_1) \rightarrow r_4$

- Here k_0, k_1, r_1, r_2, r_3 and r_4 are randomly chosen n bit strings.
Hybrid Construction

- \(G_0(G_0(k)) \rightarrow G_0(k_0) \rightarrow r_1 \)
- \(G_1(G_0(k)) \rightarrow G_1(k_0) \rightarrow r_2 \)
- \(G_0(G_1(k)) \rightarrow G_0(k_1) \rightarrow r_3 \)
- \(G_1(G_1(k)) \rightarrow G_1(k_1) \rightarrow r_4 \)

If you can distinguish between these strings then you can distinguish either between \(G(k_0) \) and \((r_1, r_2) \), or \(G(k_1) \) and \((r_1, r_2) \).

Combining, these facts we have \(F_k \) as pseudorandom.

More generalization

Define: \(F_k : \{0,1\}^n \rightarrow \{0,1\}^n \)

\[F_k(x_1, x_2, ..., x_n) = G_{x_n}(G_{x_{n-1}}(...G_{x_1}(k))) \]
• The construction can be viewed as a full binary tree of depth n.
• The value at the root is the key k.
• The value of a left child of a node with value k’ is \(G_0(k') \)
• The value of a right child of a node with value k’ is \(G_1(k') \)
• The value of \(F_k(x) \) is thus obtained by traversing the tree according to x
 – if \(x_i = 0 \) traverse left
 – else traverse right
• The entire tree is exponential in n.
 – however to compute the function the entire tree need not be stored. we just need to compute the values on the path and arrive at a leaf.
Theorem

• If G is a pseudorandom generator with expansion factor $l(n) = 2n$, then the above construction is a pseudorandom function.

Proof

• Let D be a PPT algorithm which is given oracle access to a function that is either a random function that maps n bits to n bits, or the function F_k for a randomly chosen k.
Proof

• Consider the distribution of trees, obtained by varying the leaf randomly.
• Each leaf of the binary tree of depth \(n \), is thus a sequence of \(n \) bits.
• use \(H_n^0 \) to denote the distribution.
 – note this is the distribution may be thought of being on the functions \(F_k \).

Proof

• Likewise, define \(H_n^i \) for \(0 \leq i \leq n \) as follows:
 – values for node \(i \) is chosen at random.
 – values for nodes \(j \geq i+1 \) are chosen as per the function definition. That is see the value of its parent. If the value is \(k' \):
 • value is \(G_0(k') \) if is left child
 • value is \(G_1(k') \) if is right child
 – note that from the point of view of the function, the values of the nodes at levels 0 through \(i-1 \) are irrelevant. This is because they do not decide the value of the leaves.
What is H_n^n?

- It is a true random function mapping n bits to n bits.
 - this is because all the leaf values are randomly chosen.
- So, the distinguisher D is able to distinguish between the distribution H_n^0 (the actual construction) and H_n^n (the random function)

Construct D' (distinguisher against G)

- Assume that D (distinguisher against the PRF F_k) makes $t(n)$ queries to the function.
- The output is of length $2n.t(n)$
- Thus D' has $2n.t(n)$ bits of either truly random bits or output generated by $t(n)$ invocations of the function $G(s)$, for a randomly chosen s.
Strategy of D’

- D’ answers queries of D as follows:
 - D asks queries of the form $x_1x_2\ldots x_n$
 - D’ chooses a_i randomly, and goes to node i of the initially empty binary tree.
 - It computes the values of the nodes at level $i+1$ with its sample of length $2n$ as follows:
 - labels the left node with left part of the sample
 - labels the right node with right part of the sample

Observations

- If D’ receives a truly random string of length $2n t(n)$, then it answers D exactly according to $H_{n^{i+1}}$. Why?
- If D’ receives a pseudorandom input, then it answers D exactly according to H_{n^i}.
- Thus, if for some i, D distinguishes H_{n^i} and $H_{n^{i+1}}$ with a probability of $\epsilon(n)/n$, then with the same probability D’ also distinguishes $t(n)$ invocations of G(s) from a truly random string of length $2n t(n)$ with probability $\epsilon(n)/n$.
- If $\epsilon(n)$ is negligible, we violate the assumption that G is a PRG.
Reading

• How to Construct Random Functions?
 – O. Goldreich, Goldwasser, Micali, JACM 1986

One way functions

• If one way functions then pseudo random generators exist.
• If pseudorandom generators exist, so does pseudorandom functions.
• One way functions are hence necessary.
• Are one way functions sufficient also?
Theorem

• Pseudorandom generators exist only if one-way functions exist or

If there are pseudorandom generators, then there exists one-way functions.

Proof

Let G be a pseudo-random generator with expansion factor of length $2n$. We show G is itself one-way. We shall show that the inability to invert G can be used to distinguish the output of G from random.

Let A be a PPT algorithm, and then define:

$$\varepsilon(n) = \Pr[\text{Invert}_{A,G}(n) = 1]$$

Define D a PPT as follows:

Input: $w \in \{0,1\}^{2n}$

1. Run A on w. $x = A(w)$
2. If $w = G(x)$, then return 1, else 0.
Computing the success probability of D.

If \(w \) is random, what is the probability that \(D \) returns 1?

Note that there are at most \(2^n \) elements in the range of \(G \). If \(w \) falls outside the range, then \(A \) cannot invert and so \(D \) answers 0. Hence, \(\Pr_{w \leftarrow \{0,1\}^n} [D(w)=1] \leq 2^n \)

Conclusion

If \(w = G(s) \) for a uniformly chosen \(s \), then by definition \(A \) computes a correct inverse, with probability exactly \(\varepsilon(n) \). This is the same probability with which \(D \) returns 1.

\[
\therefore \left| \Pr_{w \leftarrow \{0,1\}^n} [D(w) = 1] - \Pr_{x \leftarrow \{0,1\}^n} [D(G(s)) = 1] \right| \geq \varepsilon(n) - 2^n.
\]

Hence, if \(\varepsilon(n) \) is negligible, then \(D \) also have a significant success probability.
Question

• Does secured private key encryption imply the existence of one-way functions?
 – not straightforward
 – there may be construction techniques which do not depend on the above primitives.

• We show that it really does, assuming the weakest form of security notions of the encryption scheme.

Theorem

• If there exists a private key encryption that has indistinguishable encryptions in the presence of an eavesdropper, the one-way functions exist!
 – note for a perfect cipher, where the key length is same or more than the message length, such an assumption need not hold.
 – so we are considering practical ciphers, where the key length is less than the message length.
Proof

Define $\Pi=(\text{Gen},\text{Enc},\text{Dec})$ be a private key encryption scheme that has indistinguishable encryptions in the presence of an adversary. Define $f: f(k,m,r)=(\text{Enc}_k(m,r),m)$ Here k, m and r are respectively of n, $2n$ and $l(n)$ bits. That is the encryption uses at most $l(n)$ bits of randomness. We claim that this function is one-way.

Proof

Consider a PPT algorithm A, which inverts the function, f with a probability of $\varepsilon(n)$.
$\therefore \varepsilon(n)=\Pr[\text{Invert}_{A,f}(n)=1]$. Assume $\varepsilon(n)$ is non-negligible.

Now define a PPT algorithm A', which runs an experiment $\text{Priv}_{A',f}^{\text{CPA}}(n)$.
Now define a PPT algorithm A', which runs an experiment $\text{Priv}_{\text{CPA}}^{\text{A',A}}(n)$.

1. A' chooses random $m_0, m_1 \leftarrow \{0,1\}^n$ and output the two messages. It receives a challenge c, which is the encryption of m_b, where b is randomly chosen.

2. A' has to say whether $b=0$ or 1. A' runs $A(c,m_b)$ to obtain (k',m',r'). If $f(k',m',r')=(c,m_b)$, then A' outputs 0. Else it outputs a random bit.

If c has been generated by encrypting m_b [i.e. $b = 0$] and A is able to invert, then we see that A' gives correct answer. Otherwise, if A is unable to invert, A' has a probability of 1/2 being correct.

$$
\therefore \text{Pr}[^{\text{CPA}}_{\text{PIA}}(n) = 1 | b = 0] = \text{Pr}[\text{invert}_A | b = 0] + \frac{1}{2} \left(1 - \text{Pr}[\text{invert}_A | b = 0] \right) = \epsilon(n) + \frac{1}{2} (1 - \epsilon(n)) = \frac{1}{2} (1 + \epsilon(n))
$$
Proof

If \(c \) has been generated by encrypting \(m \) (i.e. \(b=1 \)) by a key say \(k \), what is the probability that \(A' \) returns 1?

Note that \(c \) must be the ciphertext of the message \(m \) for some other value of the key, say \(k' \). So, when \((c,m)\) is being given to \(A \), the probability that \(c \) is actually the ciphertext of a randomly chosen \(m \) is at most \(2^{-n} \cdot 2^{-\alpha} = 2^{-\alpha} \). Then \(A \) inverts and obtains \((k',m',r')\), and if \(f(k',m',r')=(c,m) \), then it returns 0. Now this wrong, as \(b=1 \).
Otherwise, invert does not take place and there is 1/2 probability of \(A' \) to return the correct bit.

Conclusion

\[
\text{:. Pr}[\text{Priv}_{\text{CPA}}(n)=1 | b=0] = \frac{1}{2} (1 - \text{Pr}[\text{Invert}_{A'} | b=1]) \geq \frac{1}{2} (1 - 2^{-\alpha})
\]

Combining, \(\text{Pr}[\text{Priv}_{\text{CPA}}(n)=1] \geq \frac{1}{2} \cdot \frac{1}{2} (1 + \varepsilon(n)) + \frac{1}{2} \cdot \frac{1}{2} (1 - 2^{-\alpha}) = \frac{1}{2} + \frac{\varepsilon(n)}{4} - \frac{1}{2^{\alpha+2}} \)

Thus the indistinguishability of the encryption scheme under the assumption of an eavesdropper is violated. Thus \(\varepsilon(n) \) must be negligible.