Construction of Pseudo-random Functions

Debdeep Mukhopadhyay IIT Kharagpur

Theorem

• If G is a pseudorandom generator with expansion factor *l*(*n*)=2*n*, then the above construction is a pseudorandom function.

Strategy of D'

- D' answers queries of D as follows:
 - D asks queries of the form $x_1x_2...x_n$
 - D' chooses a i randomly, and goes to node i of the initially empty binary tree.
 - It computes the values of the nodes at level
 i+1 with its sample of length 2n as follows:
 - · labels the left node with left part of the sample
 - · labels the right node with right part of the sample

Reading

How to Construct Random Functions?
 – O. Goldreich, Goldwasser, Micali, JACM 1986

One way functions then pseudo random generators exist. If pseudorandom generators exist, so does pseudorandom functions. One way functions are hence necessary. Are one way functions sufficient also?

Computing the success probability of D.

If w is random, what is the probability that D returns 1?

Note that there are at most 2^n elements in the range of G. If w falls outside the range, then A cannot invert and so D answers 0. Hence, $\Pr_{w \leftarrow \{0,1\}^{2n}}[D(w)=1] \le 2^{-n}$

Question

- Does secured private key encryption imply the existence of one-way functions?
 - not straightforward
 - there may be construction techniques which do not depend on the above primitives.
- We show that it really does, assuming the weakest form of security notions of the encryption scheme.

Proof

Define Π =(Gen,Enc,Dec) be a private key encryption scheme that has indistuishable encryptions in the presence of an adversary. Define f: f(k,m,r)=(Enc_k(*m*,*r*),*m*) Here k, m and r are respectively of n, 2n and l(n) bits. That is the encryption uses at most l(n) bits of randomness. We claim that this function is one-way.

Now define a PPT algorithm A', which runs an experiment $\operatorname{Priv}_{A,\Pi'}^{CPA}(n)$. 1. A' chooses random $m_0, m_1 \leftarrow \{0,1\}^{2n}$ and output the two messages. It receives a challenge c, which is the encryption of m_b , where b is randomly chosen. 2. A' has to say whether b=0 or 1. A' runs A(c,m_0) to obtain (k',m',r').

If $f(k',m',r')=(c,m_0)$, then A' outputs 0. Else it outputs a random bit.

If c has been generated by encrypting m_0 [*i*, *e b* = 0] and A is able to invert, then we see that A' gives correct answer. Otherwise, if A is unable to invert, A' has a probability of 1/2 being correct.

$$\therefore \Pr[\operatorname{Priv}_{\Pi,A'}^{CPA}(n) = 1 \mid b = 0] = \Pr[invert_A \mid b = 0] + \frac{1}{2}(1 - \Pr[invert_A \mid b = 0])$$
$$= \varepsilon(n) + \frac{1}{2}(1 - \varepsilon(n)) = \frac{1}{2}(1 + \varepsilon(n))$$

